A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mining sorghum pangenome enabled identification of new dw3 alleles for breeding stable-dwarfing hybrids. | LitMetric

Allele mining of crop pangenomes can enable the identification of novel variants for trait improvement, increase crop genetic diversity, and purge deleterious mutations around fixed genomic regions. Sorghum, a C4 cereal crop domesticated in the tropics, was selected for reduced plant height and maturity to develop combine-harvestable and photoperiod-insensitive US grain sorghums. To breed semi-dwarf US grain sorghum hybrids, public and private sector programs mostly used the dw3-ref allele, which produces undesirable height revertants (frequency of 0.1-0.3%) due to uneven crossing over at the 882 bp tandem duplication region. Although the dw3-ref allele produces revertants, US sorghum breeding programs continued using this allele in the absence of identified allelic variants that suppress revertants. In this study, we leveraged a sorghum pangenome resource (resequenced sorghum association panel and a global diversity panel of 1661 lines) to identify seven loss-of-function variants in the Dw3 gene using the SnpEff variant calling prediction. We validated the Segaolane dw3 loss-of-function variant, resulting from a 137 bp deletion in the third exon, to suppress revertant production. Segaolane NAM family RILs with the dw3-ref allele produced revertants while no revertants were observed in RILs with the Segaolane dw3 allele. The availability of resequencing data enabled the designing of haplotype-based markers detecting the Segaolane stable dw3 allele for marker-assisted trait introgression into elite sorghum breeding lines. This research mining new stable-dwarfing dw3 alleles demonstrated the application of sorghum pan-genome for trait improvement and developing marker-assisted breeding strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/g3journal/jkaf054DOI Listing

Publication Analysis

Top Keywords

dw3-ref allele
12
sorghum pangenome
8
dw3 alleles
8
trait improvement
8
allele produces
8
sorghum breeding
8
segaolane dw3
8
dw3 allele
8
allele
7
sorghum
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!