Natural killer cells in the lung: novel insight and future challenge in the airway diseases.

ERJ Open Res

Respiratory Diseases Unit, Department of Medical Sciences, Surgery and Neurosciences, Siena University Hospital, Siena, Italy.

Published: March 2025

Natural killer (NK) cells are innate lymphoid cells which are present in the lung as circulating and resident cells. They are key players both in airway surveillance and in crosstalk with (COPD) pathogenesis, and they seem to contribute to the development of bronchiectasis. In asthma, NK cell dysfunction was observed mainly in severe forms, and it can lead to a biased type-2 immune response and failure in the resolution of eosinophilic inflammation that characterise both allergic and eosinophilic phenotypes. Moreover, aberrant NK cell functions may interfere with antimicrobial immune response contributing to the frequency and severity of virus-induced exacerbations. In COPD, lung NK cells exhibit increased cytotoxicity against lung epithelium contributing to lung tissue destruction and emphysema. This cell destruction may be exacerbated by viral infections and cigarette smoke exposure through NKG2D-dependent detection of cellular stress. Lastly, in bronchiectasis, the airway NK cells might both promote neutrophil survival following stimulation by proinflammatory cytokines and promote neutrophil apoptosis. Systemic steroid treatment seemingly compromises NK activity, while biologic treatment with benralizumab could enhance NK cell proliferation, maturation and activation. This narrative review gives an overview of NK cells in airway diseases focusing on pathophysiological and clinical implications. Together, our findings emphasise the pleiotropic role of NK cells in airway diseases underscoring their possible implications as to therapeutical approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895099PMC
http://dx.doi.org/10.1183/23120541.00683-2024DOI Listing

Publication Analysis

Top Keywords

airway diseases
12
natural killer
8
cells
8
killer cells
8
cells lung
8
immune response
8
promote neutrophil
8
cells airway
8
lung
5
airway
5

Similar Publications

Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis.

View Article and Find Full Text PDF

HGF-DPSCs ameliorate asthma by regulating CCR1 Th2 cells responses in mice pulmonary mucosa.

Cytotherapy

February 2025

Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China. Electronic address:

Asthma, a prevalent allergic disease affecting approximately 300 million individuals globally, remains a significant public health challenge. Mesenchymal stromal cells (MSCs) and hepatocyte growth factor (HGF), both recognized for their immunomodulatory properties, hold therapeutic potential for asthma. However, their precise mechanisms remain underexplored.

View Article and Find Full Text PDF

Rationale: Quantifying functional small airways disease (fSAD) requires additional expiratory computed tomography (CT) scan, limiting clinical applicability. Artificial intelligence (AI) could enable fSAD quantification from chest CT scan at total lung capacity (TLC) alone (fSAD).

Objectives: To evaluate an AI model for estimating fSAD, compare it with dual-volume parametric response mapping fSAD (fSAD), and assess its clinical associations and repeatability in chronic obstructive pulmonary disease (COPD).

View Article and Find Full Text PDF

The Microbiome in Asthma Heterogeneity: The Role of Multi-Omic Investigations.

Immunol Rev

March 2025

Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Asthma is one of the most prevalent and extensively studied chronic respiratory conditions, yet the heterogeneity of asthma remains biologically puzzling. Established factors like exogenous exposures and treatment adherence contribute to variability in asthma risk and clinical outcomes. It is also clear that the endogenous factors of genetics and immune system response patterns play key roles in asthma.

View Article and Find Full Text PDF

Pathogenic and Nonpathogenic Antibody Responses in Allergic Diseases.

Eur J Immunol

March 2025

Institut Pasteur, Université de Paris Cité, Unit of Antibodies in Therapy and Pathology, Paris, France.

Allergen-specific antibodies, particularly of the IgE class, are a hallmark of many allergic diseases. Yet paradoxically, (1) a proportion of healthy individuals possess allergen-specific IgE without clinical signs of allergy; (2) some, but not all, allergic individuals develop a more severe disease over time or fail to respond to allergen-specific immunotherapy; and (3) allergen-specific IgG antibodies can inhibit IgE-mediated responses but they can also induce allergic reactions. In this review, we discuss the occurrence of and transition between nonpathogenic and pathogenic allergen-specific antibody responses in the light of a two-stage model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!