A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying right and left impact using the derivative of linear resultant acceleration from a single sacrum-mounted IMU. | LitMetric

This study introduces a novel method for gait analysis using a single inertial measurement unit placed on the sacrum. This method is valid not only on level ground but also on incline and decline conditions. The method leverages the "crackle" function, the third derivative of the sacral resultant acceleration, to identify right and left gait events. This approach is particularly effective in capturing the initial peak in acceleration data during foot impact with the ground, often overlooked by other methods. The study aimed to demonstrate the method's accuracy in identifying the right- and left-side impacts during level ground, incline, and decline runs across a range of speeds. Additionally, the algorithm was applied in outdoor running scenarios, where it performed very well, further validating its robustness and reliability. The results are compared with other existing methods to highlight the effectiveness of this approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894424PMC
http://dx.doi.org/10.1017/wtc.2025.4DOI Listing

Publication Analysis

Top Keywords

resultant acceleration
8
level ground
8
ground incline
8
incline decline
8
identifying left
4
left impact
4
impact derivative
4
derivative linear
4
linear resultant
4
acceleration single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!