Predictive control of musculotendon loads across fast and slow-twitch muscles in a simulated system with parallel actuation.

Wearable Technol

Neuromuscular Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands.

Published: February 2025

Research in lower limb wearable robotic control has largely focused on reducing the metabolic cost of walking or compensating for a portion of the biological joint torque, for example, by applying support proportional to estimated biological joint torques. However, due to different musculotendon unit (MTU) contractile speed properties, less attention has been given to the development of wearable robotic controllers that can steer MTU dynamics directly. Therefore, closed-loop control of MTU dynamics needs to be robust across fiber phenotypes, that is ranging from slow type I to fast type IIx in humans. The ability to perform closed-loop control the in-vivo dynamics of MTUs could lead to a new class of wearable robots that can provide precise support to targeted MTUs for preventing onset of injury or providing precision rehabilitation to selected damaged tissues. In this paper, we introduce a novel closed-loop control framework that utilizes nonlinear model predictive control to keep the peak Achilles tendon force within predetermined boundaries during diverse range of cyclic force production simulations in the human ankle plantarflexors. This control framework employs a computationally efficient model comprising a modified Hill-type MTU contraction dynamics component and a model of the ankle joint with parallel actuation. Results indicate that the closed-form muscle-actuation model's computational time is in the order of microseconds and is robust to different muscle contraction velocity properties. Furthermore, the controller achieves tendon force control within a time frame below , aligning with the physiological electromechanical delay of the MTU and facilitating its potential for future real-world applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894420PMC
http://dx.doi.org/10.1017/wtc.2025.1DOI Listing

Publication Analysis

Top Keywords

closed-loop control
12
predictive control
8
parallel actuation
8
wearable robotic
8
biological joint
8
mtu dynamics
8
control framework
8
tendon force
8
control
7
mtu
5

Similar Publications

This article deals with the observer-based control problem of networked periodic piecewise systems under encoding-decoding frameworks. An encoder with a uniform quantizer, which can compress and encrypt data, is provided to process the measurements from the sensors. The processed data is transmitted over the network to the decoder to recover the original data and then to the remote control station, thereby reducing the communication burden and ensuring data security.

View Article and Find Full Text PDF

Volumetric, Microfluidic Plasmonic RT-PCR.

Small Methods

March 2025

Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.

Decentralized molecular detection of pathogens remains an important goal for public health. Although polymerase chain reaction (PCR) remains the gold-standard molecular detection method, thermocycling using Peltier heaters presents challenges in decentralized settings. Recent work has demonstrated plasmonic PCR, where nanomaterials on a surface or nanoparticles in solution heat upon stimulation by light, as a promising method for rapid thermocycling.

View Article and Find Full Text PDF

Yeast poly(A)-binding protein (Pab1) controls translation initiation in vivo primarily by blocking mRNA decapping and decay.

Nucleic Acids Res

February 2025

Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.

Poly(A)-binding protein (Pab1 in yeast) is involved in mRNA decay and translation initiation, but its molecular functions are incompletely understood. We found that auxin-induced degradation of Pab1 reduced bulk mRNA and polysome abundance in WT but not in a mutant lacking the catalytic subunit of decapping enzyme (Dcp2), suggesting that enhanced decapping/degradation is a major driver of reduced translation at limiting Pab1. An increased median poly(A) tail length conferred by Pab1 depletion was likewise not observed in the dcp2Δ mutant, suggesting that mRNA isoforms with shorter tails are preferentially decapped/degraded at limiting Pab1.

View Article and Find Full Text PDF

Predictive control of musculotendon loads across fast and slow-twitch muscles in a simulated system with parallel actuation.

Wearable Technol

February 2025

Neuromuscular Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands.

Research in lower limb wearable robotic control has largely focused on reducing the metabolic cost of walking or compensating for a portion of the biological joint torque, for example, by applying support proportional to estimated biological joint torques. However, due to different musculotendon unit (MTU) contractile speed properties, less attention has been given to the development of wearable robotic controllers that can steer MTU dynamics directly. Therefore, closed-loop control of MTU dynamics needs to be robust across fiber phenotypes, that is ranging from slow type I to fast type IIx in humans.

View Article and Find Full Text PDF

Neuroplasticity changes in cortical activity, grey matter, and white matter of stroke patients after upper extremity motor rehabilitation via a brain-computer interface therapy program.

J Neural Eng

March 2025

Technological Research Subdirection, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Calz. México-Xochimilco No. 289, Col. Arenal de Guadalupe, Del. Tlalpan, Mexico, 14389, MEXICO.

Objective: Upper extremity (UE) motor function loss is one of the most impactful consequences of stroke. Recently, brain-computer interface (BCI) systems have been utilized in therapy programs to enhance UE motor recovery after stroke, widely attributed to neuroplasticity mechanisms. However, the effect that the BCI's closed-loop feedback can have in these programs is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!