This study presents a novel deep learning approach for surface electromyography (sEMG) gesture recognition using stacked autoencoder neural network (SAE)s. The method leverages hierarchical representation learning to extract meaningful features from raw sEMG signals, enhancing the precision and robustness of gesture classification.•Feature Extraction and Classification MODWT Decomposition: The sEMG signals were decomposed using the MODWT DECOMPOSITION(Maximal Overlap Discrete Wavelet Transform) to capture various frequency components.•Time Domain Parameters: A total of 28 features per subject were extracted from the time domain, including statistical and spectral features.•Classifier Evaluation: Initial evaluations involved Autoencoder and LDA (Linear Discriminant Analysis) classifiers, with Autoencoder achieving an average accuracy of 77.96 % ± 1.24, outperforming LDA's 65.36 % ± 1.09.Advanced Neural Network Approach: Stacked Autoencoder Neural Network: To address challenges in distinguishing similar gestures within grasp groups, a Stacked Autoencoder Neural Network was employed. This advanced neural network architecture improved classification accuracy to over 100 %, demonstrating its effectiveness in handling complex gesture recognition tasks. These findings emphasize the significant potential of deep learning models in enhancing prosthetic control and rehabilitation technologies. . To verify these findings, we developed a 3d hand module in ADAMS software that is simulated using Matlab-ADAMS cosimulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894319PMC
http://dx.doi.org/10.1016/j.mex.2025.103207DOI Listing

Publication Analysis

Top Keywords

neural network
24
stacked autoencoder
16
autoencoder neural
16
gesture recognition
12
semg gesture
8
recognition stacked
8
deep learning
8
semg signals
8
autoencoder
6
neural
6

Similar Publications

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.

View Article and Find Full Text PDF

There is great interest in using genetically tractable organisms such as to gain insights into the regulation and function of sleep. However, sleep phenotyping in has largely relied on simple measures of locomotor inactivity. Here, we present FlyVISTA, a machine learning platform to perform deep phenotyping of sleep in flies.

View Article and Find Full Text PDF

Resting brain activity, in the absence of explicit tasks, appears as distributed spatiotemporal patterns that reflect structural connectivity and correlate with behavioral traits. However, its role in shaping behavior remains unclear. Recent evidence shows that resting-state spatial patterns not only align with task-evoked topographies but also encode distinct visual (e.

View Article and Find Full Text PDF

Machine-learning heat flux closure for multi-moment fluid modeling of nonlinear Landau damping.

Proc Natl Acad Sci U S A

March 2025

Department of Astronomy, Center for Space Physics, Boston University, Boston, MA 02215.

Nonlinear plasma physics problems are usually simulated through comprehensive modeling of phase space. The extreme computational cost of such simulations has motivated the development of multi-moment fluid models. However, a major challenge has been finding a suitable fluid closure for these fluid models.

View Article and Find Full Text PDF

We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!