Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Multidrug-resistant strains of the genus can produce various β-lactamases that confer resistance to a broad spectrum of β-lactams, which poses a significant public health threat due to their emergence and spread in clinical settings and natural environments. Therefore, a comprehensive investigation into the antibiotic resistance mechanisms of is scientifically significant.
Methods: Between 2018 and 2021, 78 clinical isolates were collected from human clinical specimens. The MicroScan WalkAway system and average nucleotide identity (ANI) analyses were used to classify the bacterial species. Antibiotic susceptibility was determined through the minimum inhibitory concentration (MIC) test via the agar dilution method. To determine the resistance mechanism and the structure of the resistance gene-related sequences, molecular cloning, whole-genome sequencing and bioinformatic analysis were performed.
Results: Among the 78 isolates studied in this work, obtained from various specimens from different clinical departments, 77 were classified into seven known species by ANI analysis. Most of the isolates were (34.6%, 27/78), followed by (25.6%, 20/78). Multilocus sequence typing (MLST) revealed that they belonged to 72 sequence types (STs), including 52 new STs. A total of 334 resistance genes of 30 antibiotic resistance genotypes were identified from the genomes, more than half (55.99%, 187/334) of which were β-lactamase genes. The isolates showed much higher rates of resistance to penicillins (penicillin G, 98.7%) and first-generation cephalosporins (cefazolin, 96.2%), but lower resistance rates to fourth-generation cephalosporins (cefepime, 6.4%), monobactams (aztreonam, 5.1%), and carbapenems (imipenem, 1.3% and meropenem, 5.1%). Structural analyses of some β-lactamase genes (such as and ) related sequences revealed that they were generally associated with mobile genetic elements.
Conclusion: The investigation of the correlation between the distribution of β-lactamase genes and resistance phenotypes in this study suggested an urgent need for rigorous monitoring and control to counteract the escalating public health threat posed by the increase in strains harboring extended-spectrum β-lactamase and metallo-β-lactamase genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893600 | PMC |
http://dx.doi.org/10.3389/fmicb.2025.1473150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!