A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple defense is an effective antipredator strategy in dinoflagellates. | LitMetric

Multiple defense is an effective antipredator strategy in dinoflagellates.

ISME Commun

Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut 06340, United States.

Published: January 2025

Phytoplankton have evolved myriad defenses against predators; yet, studies that simultaneously test for defense fitness costs and benefits are rare. We tested for relative fitness costs and benefits of defense in the marine dinoflagellate using a framework that relates growth rates of prey genotypes (strains) that differed in constitutive toxin production (low, moderate, and high) to predator (copepod) concentration. Our approach is based on a novel molecular technique that allows one to disentangle the effect of predation mortality from the cell growth reduction due to toxin production. Results show that the strain with the highest constitutive toxin production was the only one that expressed inducible toxin production-a strategy that paid off as its fitness benefit outweighed its cost. Surprisingly, the moderate toxin strain that derived the highest relative fitness benefit increased cell division rate (akin to compensatory growth) and decreased cell size, while keeping its volume-specific toxin production constant in response to predation. These results suggest an effective antipredator defense portfolio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894931PMC
http://dx.doi.org/10.1093/ismeco/ycaf029DOI Listing

Publication Analysis

Top Keywords

toxin production
16
effective antipredator
8
fitness costs
8
costs benefits
8
relative fitness
8
constitutive toxin
8
fitness benefit
8
toxin
6
multiple defense
4
defense effective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!