Parameter optimization of 3D convolutional neural network for dry-EEG motor imagery brain-machine interface.

Front Neurosci

Department of Precision Machinery Engineering, College of Science and Technology, Nihon University, Funabashi, Chiba, Japan.

Published: February 2025

Easing the behavioral restrictions of those in need of care not only improves their own quality of life (QoL) but also reduces the burden on care workers and may help reduce the number of care workers in countries with declining birthrates. The brain-machine interface (BMI), in which appliances and machines are controlled only by brain activity, can be used in nursing care settings to alleviate behavioral restrictions and reduce stress for those in need of care. It is also expected to reduce the workload of care workers. In this study, we focused on motor imagery (MI) classification by deep-learning to construct a system that can identify MI obtained by electroencephalography (EEG) measurements with high accuracy and a low latency response. By completing the system on the edge, the privacy of personal MI data can be ensured, and the system is ubiquitous, which improves user convenience. On the other hand, however, the edge is limited by hardware resources, and the implementation of models with a huge number of parameters and high computational cost, such as deep-learning, on the edge is challenging. Therefore, by optimizing the MI measurement conditions and various parameters of the deep-learning model, we attempted to reduce the power consumption and improve the response latency of the system by minimizing the computational cost while maintaining high classification accuracy. In addition, we investigated the use of a 3-dimension convolutional neural network (3D CNN), which can retain spatial locality as a feature to further improve the classification accuracy. We propose a method to maintain a high classification accuracy while enabling processing on the edge by optimizing the size and number of kernels and the layer structure. Furthermore, to develop a practical BMI system, we introduced dry electrodes, which are more comfortable for daily use, and optimized the number of parameters and memory consumption size of the proposed model to maintain classification accuracy even with fewer electrodes, less recall time, and a lower sampling rate. Compared to EEGNet, the proposed 3D CNN reduces the number of parameters, the number of multiply-accumulates, and memory footprint by approximately 75.9%, 16.3%, and 12.5%, respectively, while maintaining the same level of classification accuracy with the conditions of eight electrodes, 3.5 seconds sample window size, and 125 Hz sampling rate in 4-class dry-EEG MI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893816PMC
http://dx.doi.org/10.3389/fnins.2025.1469244DOI Listing

Publication Analysis

Top Keywords

classification accuracy
20
care workers
12
number parameters
12
convolutional neural
8
neural network
8
motor imagery
8
brain-machine interface
8
behavioral restrictions
8
computational cost
8
high classification
8

Similar Publications

Background: Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin.

Objective: In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning.

View Article and Find Full Text PDF

Motivation: Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships.

View Article and Find Full Text PDF

Background: The increasing integration of artificial intelligence (AI) systems into critical societal sectors has created an urgent demand for robust privacy-preserving methods. Traditional approaches such as differential privacy and homomorphic encryption often struggle to maintain an effective balance between protecting sensitive information and preserving data utility for AI applications. This challenge has become particularly acute as organizations must comply with evolving AI governance frameworks while maintaining the effectiveness of their AI systems.

View Article and Find Full Text PDF

Neighborhood rough sets are an effective model for handling numerical and categorical data entangled with vagueness, imprecision, or uncertainty. However, existing neighborhood rough set models and their feature selection methods treat each sample equally, whereas different types of samples inherently play different roles in constructing neighborhood granules and evaluating the goodness of features. In this study, the sample weight information is first introduced into neighborhood rough sets, and a novel weighted neighborhood rough set model is consequently constructed.

View Article and Find Full Text PDF

Breast cancer is the most prevalent cancer among women and poses a significant global health challenge due to its association with uncontrolled cell proliferation. Artificial intelligence (AI) integration into medical practice has shown promise in boosting diagnosis accuracy and treatment protocol optimisation, thus contributing to improved survival rates globally. This paper presents a comprehensive analysis utilizing the Wisconsin Breast Cancer dataset, comprising data from 569 patients and 30 attributes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!