Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Endovascular treatment (EVT) has been recommended as a superior modality for the treatment of intracranial aneurysm. However, there still exists a worse percentage of poor functional outcome in patients with poor-grade aneurysmal subarachnoid hemorrhage (aSAH) undergoing EVT. Therefore, it is urgently needed to investigate the risk factors and develop a critical decision model in the subtype of such patients.
Methods: We extracted the target variables from an ongoing registry cohort study, PROSAH-MPC, which was conducted in multiple centers in China. We randomly assigned these patients to training and validation cohorts with a ratio of 7:3. Univariate and multivariate logistic regressions were performed to find the potential factors, and then nine machine learning models and a stack ensemble model were developed with optimized variables. The performance of these models was evaluated through several indicators, including area under the receiver operating characteristic curve (AUC-ROC). We further use Shapley Additive Explanations (SHAP) methods for the distribution of feature visualization based on the optimal models.
Results: A total of 226 eligible patients with poor-grade aSAH undergoing EVT were enrolled, while 89 (39.4%) has a poor 12-month outcome. Age (Adjusted OR [aOR], 1.08; 95% CI: 1.03-1.13; p = 0.002), subarachnoid hemorrhage volume (aOR, 1.02; 95% CI: 1.00-1.05; p = 0.033), World Federation of Neurosurgical Societies grade (WFNS) (aOR, 2.03; 95% CI: 1.05-3.93; p = 0.035), and Hunt-Hess grade (aOR, 2.36; 95% CI: 1.13-4.93; p = 0.022) were identified as the independent risk factors of the poor outcome. Then, the prediction models developed have revealed that LightGBM algorithm has a superior performance with an AUC-ROC value of 0.842 in the validation cohort, while the SHAP results showed that age is the most important risk factor affecting functional outcomes.
Conclusion: The LightGBM model holds immense potential in facilitating risk stratification for poor-grade aSAH patients undergoing endovascular treatment who are at risk of adverse outcomes, thereby enhancing clinical decision-making processes.
Trial Registration: PROSAH-MPC. NCT05738083. Registered 16 November 2022 - Retrospectively registered, https://clinicaltrials.gov/study/NCT05738083.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895686 | PMC |
http://dx.doi.org/10.2147/TCRM.S504745 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!