Microorganisms, including bacteria, viruses, and fungi, have been found to play critical roles in tumor microenvironments. Due to their low biomass and other obstacles, the presence of intratumor microbes has been challenging to definitively establish. However, advances in biotechnology have enabled researchers to reveal the association between intratumor microbiota and cancer. Recent studies have shown that tumor tissues, once thought to be sterile, actually contain various microorganisms. Disrupted mucosal barriers and adjacent normal tissues are important sources of intratumor microbiota. Additionally, microbes can invade tumors by traveling through the bloodstream to the tumor site and infiltrating through damaged blood vessels. These intratumor microbiota may promote the initiation and progression of cancers by inducing genomic instability and mutations, affecting epigenetic modifications, activating oncogenic pathways, and promoting inflammatory responses. This review summarizes the latest advancements in this field, including techniques and methods for identifying and culturing intratumor microbiota, their potential sources, functions, and roles in the efficacy of immunotherapy. It explores the relationship between gut microbiota and intratumor microbiota in cancer patients, and whether altering gut microbiota might influence the characteristics of intratumor microbiota and the host immune microenvironment. Additionally, the review discusses the prospects and limitations of utilizing intratumor microbiota in antitumor immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893407PMC
http://dx.doi.org/10.3389/fonc.2025.1506577DOI Listing

Publication Analysis

Top Keywords

intratumor microbiota
28
microbiota
10
intratumor
8
microbiota cancer
8
gut microbiota
8
emerging roles
4
roles intratumoral
4
intratumoral microbiota
4
microbiota key
4
key novel
4

Similar Publications

Microorganisms, including bacteria, viruses, and fungi, have been found to play critical roles in tumor microenvironments. Due to their low biomass and other obstacles, the presence of intratumor microbes has been challenging to definitively establish. However, advances in biotechnology have enabled researchers to reveal the association between intratumor microbiota and cancer.

View Article and Find Full Text PDF

Tumour-associated microbiota are integral components of the tumour microenvironment (TME). However, previous studies on intratumoral microbiota primarily rely on bulk tissue analysis, which may obscure their spatial distribution and localized effects. In this study, we applied in situ spatial-profiling technology to investigate the spatial distribution of intratumoral microbiota in breast cancer and their interactions with the local TME.

View Article and Find Full Text PDF

Multiomics insights into BMI-related intratumoral microbiota in gastric cancer.

Front Cell Infect Microbiol

March 2025

Endoscopy Division, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

Introduction: Body mass index (BMI) is considered an important factor in tumor prognosis, but its role in gastric cancer (GC) remains controversial. There is a lack of studies exploring the effect of BMI on gastric cancer from the perspective of intratumoral microbiota. This study aimed to compare and analyze the differences in and functions of intratumoral microbiota among GC patients with varying BMIs, aiming to ascertain whether specific microbial features are associated with prognosis in low-BMI (LBMI) gastric cancer patients.

View Article and Find Full Text PDF

Objective: Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, with significant clinical heterogeneity. Recent studies suggest that the intratumoral microbiome may influence the tumor microenvironment, affecting patient prognosis and therapeutic responses. This study aims to identify microbiome-related subtypes in DLBCL and assess their impact on prognosis, immune infiltration, and therapeutic sensitivity.

View Article and Find Full Text PDF

While the intratumoral microbiota has been discovered to have a close connection with tumor immunity, the specific role played by intratumoral microbiota in regulating the tumor immune microenvironment (TIME) of lung cancer remains largely unexplored. Here, we comprehensively investigated the association between intratumoral microbiota and the TIME in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). First, we found that intratumoral microbiota and host transcriptome profile significantly differed between LUAD and LUSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!