Study of Brain Cells in Neurodegenerative Diseases: Raman Microspectroscopy and Scanning Ion-Conductance Microscopy.

Sovrem Tekhnologii Med

DSc, Professor, Department of Biophysics, Faculty of Biology; Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, 119991, Russia; Professor, Department of Physical Materials; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia.

Published: March 2025

Unlabelled: was to identify differences in the structure of the neuronal process network as well as the composition and functional state of cells by studying the bodies and processes of rat brain neurons and astrocytes obtained from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease by using a complex of modern high-precision methods such as Raman microspectroscopy, surface-enhanced Raman microspectroscopy, and scanning ion-conductance microscopy.

Materials And Methods: By using Raman spectroscopy and scanning ion-conductance microscopy, the researchers studied the morphology and state of molecules in rat brain neurons and astrocytes induced from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease.

Results: The researchers established that typical bands of Raman and surface-enhanced Raman spectra of neurons and astrocytes allowed studying the distribution and conformation of a series of biological molecules (proteins, lipids, cytochromes) in healthy and unhealthy states. It was shown that in Parkinson's disease, there was a decrease in the protein content and an increase in the proportion of reduced cytochromes in the respiratory chain of astrocyte mitochondria. When comparing the morphology of astrocyte bodies and processes, it was established that the height and cross-sectional area of astrocyte processes obtained from cells of patients with hereditary Parkinson's disease were significantly greater than in healthy patients.

Conclusion: The developed approach to recording the distribution and conformation of molecules in neurons and astrocytes, as well as to studying the morphology of astrocyte processes allows diagnosing the functional state of cells and investigating the mechanism of the Parkinson's disease pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892573PMC
http://dx.doi.org/10.17691/stm2025.17.1.03DOI Listing

Publication Analysis

Top Keywords

neurons astrocytes
16
parkinson's disease
16
raman microspectroscopy
12
scanning ion-conductance
12
patients hereditary
12
hereditary parkinson's
12
microspectroscopy scanning
8
ion-conductance microscopy
8
functional state
8
state cells
8

Similar Publications

Immunity and neuroinflammation in early stages of life and epilepsy.

Epilepsia

March 2025

Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.

The immune system is crucial for the correct brain development, and recent findings also point toward central control of immune response. As the immune system is not fully developed at birth, the early years become an important window for infections and for the development of epilepsy. Both central and even peripheral inflammation may impact brain function, promoting opening of the blood-brain/blood and cerebrospinal barriers and allowing entry of immune cells and cytokines, which in turn may affect neuron function and connections.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) convey complex signals between cells that can be used to promote neuronal plasticity and neurological recovery in brain disease models. These EV signals are multimodal and context-dependent, making them unique therapeutic principles. This review analyzes how EVs released from various cell sources control neuronal metabolic function, neuronal survival and plasticity.

View Article and Find Full Text PDF

Study of Brain Cells in Neurodegenerative Diseases: Raman Microspectroscopy and Scanning Ion-Conductance Microscopy.

Sovrem Tekhnologii Med

March 2025

DSc, Professor, Department of Biophysics, Faculty of Biology; Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, 119991, Russia; Professor, Department of Physical Materials; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia.

Unlabelled: was to identify differences in the structure of the neuronal process network as well as the composition and functional state of cells by studying the bodies and processes of rat brain neurons and astrocytes obtained from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease by using a complex of modern high-precision methods such as Raman microspectroscopy, surface-enhanced Raman microspectroscopy, and scanning ion-conductance microscopy.

Materials And Methods: By using Raman spectroscopy and scanning ion-conductance microscopy, the researchers studied the morphology and state of molecules in rat brain neurons and astrocytes induced from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease.

Results: The researchers established that typical bands of Raman and surface-enhanced Raman spectra of neurons and astrocytes allowed studying the distribution and conformation of a series of biological molecules (proteins, lipids, cytochromes) in healthy and unhealthy states.

View Article and Find Full Text PDF

Electroacupuncture Inhibits NLRP3-Mediated Microglial Pyroptosis to Ameliorate Chronic Neuropathic Pain in Rats.

J Pain Res

March 2025

Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China.

Background: Patients with neuropathic pain (NP), caused by injury or disease of the somatosensory nervous system, usually suffer from severe pain. Our previous studies revealed that electroacupuncture (EA) stimulation could effectively improve NP. However, the underlying mechanisms of EA have not been fully clarified.

View Article and Find Full Text PDF

Exploring effective, prompt and universally applicable approaches for inducing the differentiation of glioblastoma (GBM) into terminally differentiated cells, such as astrocytes or neurons that cease cell division, is pivotal for the success of GBM differentiation therapy. In this study, a neuronal-specific promoter-reporter system was employed to screen small molecules that promote neural differentiation. The cocktail YFSS, consisting of Y27632, Forskolin, SB431542 and SP600125, which selectively targets the ROCK, cAMP, TGF-β and JNK signalling pathways, respectively, was found to effectively trigger differentiation in human GBM cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!