Migration of Regulatory T Cells to the Peritumor Microenvironment of Experimental Glioblastoma.

Sovrem Tekhnologii Med

MD, PhD, Head of the Laboratory of Solid Tumor Immunotherapy; Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russia, 1, Bldg. 10, Ostrovityanova St., Moscow, 117513, Russia; Senior Researcher, Laboratory of Cell Technologies; Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russia, 28 Orekhovy Blvd., Moscow, 115682, Russia; Senior Researcher, Laboratory of Molecular Regeneration Mechanisms; Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.

Published: March 2025

Unlabelled: Glioblastoma is the most aggressive primary brain tumor with poor prognosis characterized by resistance to standard treatments and immune evasion. Regulatory T lymphocytes (Tregs) play a key role in immune suppression in the tumor microenvironment and can be used as targets for malignant gliomas therapy. is to study migration of Tregs to the tumor site in the process of dynamic glioblastoma growth on the transgenic C57Bl/6-FoxP3-eGFP mouse line.

Materials And Methods: The study was performed using the C57Bl/6-FoxP3-eGFP mouse strain, which allows for the detection of FoxP3-positive Tregs by fluorescent signal. Orthotopic glioblastomas were implanted by stereotactic injection of fluorescently labeled GL-261-BFP and GL-261-mScarlet tumor cell lines. Intravital confocal microscopy was used to monitor infiltration of the tumor site by immune cells, visualized by intravenous injection of fluorescently labeled antibodies against CD45. The results of intravital microscopy were confirmed by histological and immunohistochemical examination on days 3, 6, 9, 14, and 16 after the implantation. To assess the immunological status, tumor-infiltrating lymphocytes (TILs) were isolated from the brain and Tregs were counted using a flow cytometer (immediately after isolation and after cultivation for 2 weeks).

Results: Intravital microscopy and brain slice studies have demonstrated infiltration of the glioblastoma site by Tregs, with the proportion of Tregs increasing with tumor progression (the increase in the absolute number of Treg was proportional to the increase in the number of glioma cells). Subsequent co-cultivation of isolated TILs with glioma cells revealed increase of Treg population within 2 weeks from 2.8% to >40%, confirming the activating effect of glioblastoma with respect to Tregs.

Conclusion: The dynamics of GL-261 glioma microenvironment infiltration by Tregs has been investigated. The glioblastoma cells were shown to activate Tregs in the peritumor space and to promote their selective expansion when co-cultured with TILs . These data can be used for further studies on C57Bl/6-FoxP3-eGFP mice to find approaches to inactivate Tregs in glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892569PMC
http://dx.doi.org/10.17691/stm2025.17.1.07DOI Listing

Publication Analysis

Top Keywords

tregs
9
tumor site
8
c57bl/6-foxp3-egfp mouse
8
injection fluorescently
8
fluorescently labeled
8
intravital microscopy
8
glioma cells
8
glioblastoma
7
tumor
6
cells
5

Similar Publications

iPSCs engrafted in allogeneic hosts without immunosuppression induce donor-specific tolerance to secondary allografts.

Proc Natl Acad Sci U S A

March 2025

Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan.

Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting.

View Article and Find Full Text PDF

Mendelian randomization and mediation analysis reveal the role of immune cell subsets in the causal pathways between blood cell perturbation responses and rheumatoid arthritis.

Clin Rheumatol

March 2025

Laboratory of Human Anatomy, School of Basic Medicine Anatomy , Southwest Medical University, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by complex immune interactions. Elucidating the causal relationships between blood cell perturbations, immune cell subsets, and RA can provide valuable insights into its pathogenesis.

Methods: This study employed bidirectional two-sample Mendelian Randomization (MR) to explore the causal effects of blood cell perturbations on RA risk, with a focus on immune cell mediation.

View Article and Find Full Text PDF

Clinical management of acute myeloid leukemia (AML) poses significant challenges due to its poor prognosis and heterogeneous nature. Discovering new biomarkers is crucial for improving risk assessment and customizing treatment approaches. While leukocyte-specific transcript 1 (LST1) is implicated in inflammation and immune regulation, its function in AML remains ambiguous.

View Article and Find Full Text PDF

ObjectivesAcute leukemia often leads to severe complications such as febrile neutropenia. Mortality rates remain high, underscoring the need for novel prognostic markers. Regulatory T cells (Tregs) have not been extensively studied in this context.

View Article and Find Full Text PDF

Highlights from the plenary session: cellular and molecular mechanisms of disease (I).

Rheumatology (Oxford)

March 2025

Vasculitis Expertise Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

In this plenary session of the Vasculitis Workshop 2024, pioneering translational research on autoimmune vasculitis, particularly ANCA-associated vasculitis (AAV), was presented, highlighting advancements in our understanding of disease mechanisms and promising therapeutic prospects. Advances in elucidating molecular pathways, such as IL-17 and IFN-I, pave the way for specific treatments. Preclinical studies have revealed the gut microbiome's role in the pathogenesis of MPO-AAV and demonstrate the therapeutic potential of dietary interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!