Raman spectroscopy and bioinformatics-based identification of key genes and pathways capable of distinguishing between diffuse large B cell lymphoma and chronic lymphocytic leukemia.

Front Immunol

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Published: March 2025

Diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL) are subtypes of non-Hogkin lymphoma (NHL) that are generally distinct form one cases, but the transformation of one of these diseases into the other is possible. Some patients with CLL, for instance, have the potential to develop Richter transformation such that they are diagnosed with a rare, invasive DLBCL subtype. In this study, bioinformatics analyses of these two NHL subtypes were conducted, identifying key patterns of gene expression and then experimentally validating the results. Disease-related gene expression datasets from the GEO database were used to identify differentially expressed genes (DEGs) and DEG functions were examined using GO analysis and protein-protein interaction network construction. This strategy revealed many up- and down-regulated DEGs, with functional enrichment analyses identifying these genes as being closely associated with inflammatory and immune response activity. PPI network analyses and the evaluation of clustered network modules indicated the top 10 up- and down-regulated genes involved in disease onset and development. Serological analyses revealed significantly higher ALB, TT, and WBC levels in CLL patients relative to DLBCL patients, whereas the opposite was true with respect to TG, HDL, GGT, ALP, ALT, and NEUT% levels. In comparison to the CLL and DLBCL groups, the healthy control samples demonstrated higher signals of protein peak positions (621, 643, 848, 853, 869, 935, 1003, 1031, 1221, 1230, 1260, 1344, 1443, 1446, 1548, 1579, 1603, 1647 cm), nucleic acid peak positions (726, 781, 786, 1078, 1190, 1415, 1573, 1579 cm), beta carotene peak positions (957, 1155, 1162 cm), carbohydrate peak positions (842 cm), collagen peak positions (1345 cm), and lipid peak positions (957, 1078, 1119, 1285, 1299, 1437, 1443, 1446 cm) compared to the CLL and DLBCL groups. Verification of these key genes in patient samples yielded results consistent with findings derived from bioinformatics analyses, highlighting their relevance to diagnosing and treating these forms of NHL. Together, these analyses identified genes and pathways involved in both DLBCL and CLL. The set of molecular markers established herein can aid in patient diagnosis and prognostic evaluation, providing a valuable foundation for their therapeutic application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893875PMC
http://dx.doi.org/10.3389/fimmu.2025.1516946DOI Listing

Publication Analysis

Top Keywords

peak positions
24
key genes
8
genes pathways
8
diffuse large
8
chronic lymphocytic
8
lymphocytic leukemia
8
bioinformatics analyses
8
gene expression
8
up- down-regulated
8
cll dlbcl
8

Similar Publications

This study investigates the synthesis and characterization of Plant-Ag-graphene nanocomposites through a combination of spectroscopic and microscopic techniques, the nanocomposites were formed by catalyzing silver nanoparticles with plant extracts, and the resulting structures were analyzed using advanced instrumentation. In the FTIR analysis, distinctive peaks were observed at 3340 cm⁻1 (O-H stretching), 1740 cm⁻1 (C = O stretching), and 1050 cm⁻1. When compared to silver nanoparticles, the nanocomposites exhibited altered peak intensities, indicating modifications in chemical bonding.

View Article and Find Full Text PDF

Raman spectroscopy and bioinformatics-based identification of key genes and pathways capable of distinguishing between diffuse large B cell lymphoma and chronic lymphocytic leukemia.

Front Immunol

March 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL) are subtypes of non-Hogkin lymphoma (NHL) that are generally distinct form one cases, but the transformation of one of these diseases into the other is possible. Some patients with CLL, for instance, have the potential to develop Richter transformation such that they are diagnosed with a rare, invasive DLBCL subtype. In this study, bioinformatics analyses of these two NHL subtypes were conducted, identifying key patterns of gene expression and then experimentally validating the results.

View Article and Find Full Text PDF

Introduction: This study primarily investigates the impact of a 6-week Sprint Interval Training (SIT) intervention on the physical fitness test results of male university students, as well as the dose-response relationship in adjusting the experimental protocol.

Methods: A total of 26 male university students (aged 20 ± 2 years; height 174 ± 7 cm; weight 70 ± 14 kg; mean ± SD) with no systematic training in the past 3 months, no physiological diseases, and healthy physical condition voluntarily participated in the experiment. The SIT protocol was designed based on a classic Wingate sprint protocol (4-6 x 30 s sprints with 4 m of recovery), and adjustments were made based on the participants' actual adaptation.

View Article and Find Full Text PDF

This paper addresses the challenge of reconstructing the motion process of the safety and arming (S&A) mechanism in fuze by transforming the problem into a target detection and tracking problem. A novel tracking method, which fuses an improved Kalman filter with a temporal scale-adaptive KCF (AKF-CF), is proposed. The methodology introduces key innovations: (1) Extraction of grayscale images and directional gradient histogram (HOG) features of the target, followed by the use of an Adaptive Wave PCA-Autoencoder (AWPA) method to accurately capture multi-modal and multi-scale features of the target; (2) Application of bilinear interpolation and hybrid filtering techniques to generate a spatial and temporal scale-adaptive bounding box for the filtered target, enabling dynamic adjustment of the tracking box size; (3) Integration of an occlusion-aware mechanism using average peak correlation energy (APCE) to trigger Kalman-based position prediction when the target is occluded, thus mitigating tracking drift.

View Article and Find Full Text PDF

Diketopyrrolopyrrole-based blue dyes in dye-sensitized solar cells (DSCs) exhibit promise for building-integrated photovoltaics, but their efficiency is compromised by dye aggregation-induced charge recombination. Novel bile acid derivative co-adsorbents featuring bulky hydrophobic substituents at the 3-β position were synthesized to address this challenge. These molecules, designed to modulate intermolecular electronic interactions, effectively altered the TiO surface coverage dynamics, as evidenced by UV-Vis spectroscopy and dye-loading kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!