The widespread application of biodegradable microplastics (MPs) in recent years has resulted in a significant increase in their accumulation in the environment, posing potential threats to ecosystems. Thus, it is imperative to evaluate the distribution and transformation of biodegradable MPs in crops due to the utilization of wastewater containing MPs for irrigation and plastic films, which have led to a rising concentration of biodegradable MPs in agricultural soils. The present study analyzed the uptake and transformation of polylactic acid (PLA) MPs in maize. Seed germination and hydroponic experiments were conducted over a period of 5 to 20 days, during which the plants were exposed to PLA MPs at concentrations of 0, 1, 10, and 100 mg L. Low concentrations of PLA MPs (1 mg L and 10 mg L) significantly enhanced maize seed germination rate by 52.6%, increased plant shoot height by 16.6% and 16.9%, respectively, as well as elevated aboveground biomass dry weight by 133.7% and 53.3%, respectively. Importantly, depolymerization of PLA MPs was observed in the nutrient solution, resulting in the formation of small-sized PLA MPs (< 2 μm). Interestingly, further transformation occurred within the xylem sap and apoplast fluid (after 12 h) with a transformation rate reaching 13.1% and 27.2%, respectively. The enhanced plant growth could be attributed to the increase in dissolved organic carbon resulting from the depolymerization of PLA MPs. Additionally, the transformation of PLA MPs mediated pH and increase in K flux (57.2%, 72 h), leading to acidification of the cell wall and subsequent cell expansion. Our findings provide evidence regarding the fate of PLA MPs in plants and their interactions with plants, thereby enhancing our understanding of the potential impacts associated with biodegradable plastics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893570 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1544298 | DOI Listing |
Front Plant Sci
February 2025
Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, China.
The widespread application of biodegradable microplastics (MPs) in recent years has resulted in a significant increase in their accumulation in the environment, posing potential threats to ecosystems. Thus, it is imperative to evaluate the distribution and transformation of biodegradable MPs in crops due to the utilization of wastewater containing MPs for irrigation and plastic films, which have led to a rising concentration of biodegradable MPs in agricultural soils. The present study analyzed the uptake and transformation of polylactic acid (PLA) MPs in maize.
View Article and Find Full Text PDFEnviron Sci Technol
March 2025
Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
Microplastics (MPs) are known to affect soil carbon stability in a numerous ways. However, the mechanisms by which they alter the carbon stability within soil aggregates remain unclear . Herein, a one-year field experiment was conducted in an arid agricultural region employing stable isotope techniques to evaluate the soil organic carbon flow in the presence of both persistent (PE, PVC) and biodegradable (PLA, PHA) MPs.
View Article and Find Full Text PDFWater Res
March 2025
State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Microplastics (MPs) inevitably undergo aging processes in natural environments; however, how aging behaviors influence the interactions between MPs exposures and nitrate bioreduction in freshwater sediments remains poorly understood. Here, we explored the distinct impacts of virgin and aged MPs (polystyrene (PS) and polylactic acid (PLA)) on nitrate bioreduction processes in lake sediments through a long-term microcosm experiment utilizing the N isotope tracing technique and molecular analysis. Compared to virgin MPs, aged PLA significantly increased the rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) (p < 0.
View Article and Find Full Text PDFAnal Bioanal Chem
March 2025
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
Fluorescence microscopy is increasingly seen as a fast, user-friendly, and high-throughput method for detecting microplastics (MPs) in soil; however, its effectiveness across diverse MP types and soil properties remains underexplored. This study tested a fluorescence microscopy-Nile red (NR) staining approach on eight MP types, covering both biodegradable and non-biodegradable plastics, in three size ranges (≤ 150 µm, 100-250 µm, 500-1000 µm) across loamy, clayey, and sandy soils. Each sample, processed in triplicate, underwent a relatively quick and straightforward extraction procedure involving density separation, organic digestion, and NR staining, followed by fluorescence and bright-field microscopy.
View Article and Find Full Text PDFEnviron Int
March 2025
School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China. Electronic address:
This study examined the effects of hot high-fat simulants on the physicochemical properties of microplastics (MPs) from polypropylene (PP)-, low-density polyethylene (LDPE)-, and polylactic acid (PLA)-based single-use food container (SUFC) leachates and those of aging on their immunomodulatory effectors. Scenario studies have demonstrated that MPs were released from these three types of SUFCs. LDPE- and PLA-based SUFCs also released cellulose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!