This study introduces an eco-friendly approach to fabricating superstrong, core-shell, composite microcapsules, offering a sustainable alternative to traditional insoluble microplastic-based materials like melamine-formaldehyde. These microcapsules were engineered with a thick CaCO shell formed via crystal ripening in the presence of water-soluble poly(acrylic acid), encasing a hexylsalicylate oil core armored by hydrophilic SiO nanoparticles. An additional polydopamine layer was deposited via oxidative autopolymerization at pH 8.5 for improved structural and surface properties of the resulting microcapsules. These microcapsules ( = 8.8 ± 0.3 μm) were spherical, with a relatively smooth surface, and exhibited unique mechanical properties, which are essential to broaden their applications in industry. Remarkably, compression tests showed a mean rupture stress of 73.5 ± 5.0 MPa, which dramatically surpasses any other inorganic/synthetic microcarrier reported in the literature. In addition, only 10-20% of the core active was released within 2 h into a mixed water-propanol medium used as an accelerated release test, where the solubility of the active oil is high, with full release over 3 days. Herein, we also propose a novel pathway-specific binding constant (PSBC) that describes the strong interaction between Ca ions and poly(acrylic acid), in connection with their stoichiometric ratio. Overall, these microcapsules hold promise for multiple fast-moving consumer goods, where maximizing the mechanical strength of microcapsules for encapsulation of valuable functional actives is paramount; this includes but is not limited to energy storage, household, agrochemical, personal care, and healthcare applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891905PMC
http://dx.doi.org/10.1021/acs.iecr.4c04503DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
fast-moving consumer
8
consumer goods
8
polyacrylic acid
8
microcapsules
6
organic-inorganic multilayer
4
multilayer microcarriers
4
microcarriers superior
4
superior mechanical
4
properties potential
4

Similar Publications

Recalcitrant biofilm infections pose a great challenge to human health. Micro- and nanorobots have been used to eliminate biofilm infections in hard-to-reach regions inside the body. However, applying antibiofilm robots under physiological conditions is limited by the conflicting demands of accessibility and driving force.

View Article and Find Full Text PDF

As shale gas is an unconventional energy source, it is believed to be essential for achieving green resource development and improving the energy supply-demand balance. However, owing to shale's substantial anisotropic properties and various microstructures, its gas flow characteristics and transport mechanisms are exceedingly complex. Therefore, accurately predicting gas permeability evolution in shale pores was considered to be important for energy development.

View Article and Find Full Text PDF

Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound.

View Article and Find Full Text PDF

Raman spectroscopy has demonstrated significant potential in molecular detection, analysis, and identification, particularly when it adopts single-molecule surface-enhanced Raman scattering (SM-SERS) substrates. A recent SM-SERS scheme incorporates two-fold Raman enhancement mechanisms: the electromagnetic enhancement enabled by a plasmonic nanogap hotspot formed from gold sphere nanoparticles sitting on a gold mirror and the chemical enhancement enabled by a two-dimensional material, WS, inserted into the nanogap. In this work we integrate multiple advanced concepts and techniques to achieve remarkable performance improvements of SM-SERS.

View Article and Find Full Text PDF

Bio-Inspired Ionic Sensors: Transforming Natural Mechanisms into Sensory Technologies.

Nanomicro Lett

March 2025

Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.

Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors-such as photoreceptors, mechanoreceptors, and chemoreceptors-that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!