Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DNA double-strand breaks (DSBs) are the most severe form of DNA damage, primarily repaired by the non-homologous end joining (NHEJ) pathway. A critical step in this process is DNA synapsis, where the two broken ends are brought together to facilitate timely repair. Deficiencies in NHEJ synapsis can lead to improper DNA end configurations, potentially resulting in chromosomal translocations. NHEJ synapsis is a highly dynamic, multi-protein mediated assembly process. Recent advances in single-molecule techniques have led to significant progress in understanding the molecular mechanisms driving NHEJ synapsis. In this review, we summarize single-molecule methods developed for studying NHEJ synapsis, with a particular focus on the single-molecule fluorescence resonance energy transfer (smFRET) technique. We discuss the various molecular mechanisms of NHEJ synapsis uncovered through these studies and explore the coupling between synapsis and other steps in NHEJ. Additionally, we highlight the strategies, limitations, and future directions for single-molecule studies of NHEJ synapsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891076 | PMC |
http://dx.doi.org/10.52601/bpr.2024.240043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!