Doping Efficiency of Poly(benzodifurandione) from First Principles.

J Phys Chem C Nanomater Interfaces

Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain.

Published: March 2025

Poly(benzodifurandione) (PBFDO) has emerged as a promising n-type conductive polymer (n-CP) for organic electronic applications, particularly in thermoelectrics (TE), due to its high doping efficiency and environmental stability. Unlike most high-performance p-type polymers, high-efficiency n-CPs are limited, posing a bottleneck in the TE module performance. In this study, we use first-principles electronic structure calculations to investigate the thermodynamic conditions that favor n-doping in PBFDO, focusing on the role of the temperature, chain length, and doping concentration. We compute the change in Gibbs free energy, Δ, upon doping and explore how it varies with temperature and polymer chain length. Our results show that doping becomes more thermodynamically favorable at lower temperatures and in longer chains, with a strong dependence of Δ on the doping level emerging as chain length increases. Notably, PBFDO can achieve favorable doping levels across various chain lengths and temperatures, with specific doping thresholds identified for different molecular weights. These findings suggest that lower synthesis temperatures could lead to more heavily doped, higher-conductivity PBFDO, and that chain length significantly influences achievable doping efficiency. This work provides insights for optimizing PBFDO doping strategies to enhance its performance in TE applications, bridging a key gap in organic semiconductor research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891886PMC
http://dx.doi.org/10.1021/acs.jpcc.4c07765DOI Listing

Publication Analysis

Top Keywords

chain length
16
doping efficiency
12
doping
10
length doping
8
pbfdo
5
chain
5
efficiency polybenzodifurandione
4
polybenzodifurandione principles
4
principles polybenzodifurandione
4
polybenzodifurandione pbfdo
4

Similar Publications

High-Capacity Volumetric Methane Storage in Hyper-Cross-Linked Porous Polymers via Flexibility Engineering of Building Units.

Adv Mater

March 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures.

View Article and Find Full Text PDF

Chitosan is widely used in drug delivery applications, due to its biocompatibility, bio-degradability, and low toxicity. Nevertheless, its properties can be enhanced through the physical or chemical modification of its amino and hydroxyl groups. This work explores the electrostatic complexation of two chitosan samples of differing lengths with two poly(-isopropylacrylamide) (PNIPAM) homopolymers of different molecular weight carrying a chargeable carboxyl end group.

View Article and Find Full Text PDF

Yeast poly(A)-binding protein (Pab1) controls translation initiation in vivo primarily by blocking mRNA decapping and decay.

Nucleic Acids Res

February 2025

Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.

Poly(A)-binding protein (Pab1 in yeast) is involved in mRNA decay and translation initiation, but its molecular functions are incompletely understood. We found that auxin-induced degradation of Pab1 reduced bulk mRNA and polysome abundance in WT but not in a mutant lacking the catalytic subunit of decapping enzyme (Dcp2), suggesting that enhanced decapping/degradation is a major driver of reduced translation at limiting Pab1. An increased median poly(A) tail length conferred by Pab1 depletion was likewise not observed in the dcp2Δ mutant, suggesting that mRNA isoforms with shorter tails are preferentially decapped/degraded at limiting Pab1.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN) is a common complication in patients with type 2 diabetes mellitus (T2DM) with disruption of vitamin D (VD) activity as one of the risk factors. Active VD exerts its biological functions through the vitamin D receptor (VDR), which polymorphisms in the VDR gene can impair. This study aims to establish VDR FokI and ApaI polymorphisms as risk factors for PDN.

View Article and Find Full Text PDF

The instant crystallization of semi-crystalline polymers has become possible following the recent advances in Fast Scanning Calorimetry (FSC) and enables us to make a bridge between the time scale available experimentally with those accessible with computer simulations. Although the FSC observations have provided new information on the crystallization kinetics and evolution of the crystals, the molecular details on the chain exchange events between the ordered and disordered domains of crystals have remained elusive. Using molecular dynamics simulations, we examined the detailed chain dynamics and thermodynamics of polyamide 6 (PA6) system under two heating treatments: (i) quenching PA6 melt deeply below the melting temperature Tm and (ii) annealing the resulting quenched system to a temperature close to Tm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!