Brain tumors represent a significant burden, particularly in low- and middle-income countries (LMICs) where access to neuroimaging techniques is often limited. Conventional MRI machines are expensive and bulky, posing a significant challenge in the diagnosis and treatment of brain tumors in LMICs. However, an emerging technology, ultra-low field magnetic resonance imaging (pULF-MRI), has the potential to address this limitation. This study aimed to evaluate the feasibility and effectiveness of post-contrast enhancement in a pULF-MRI scanner for brain tumor imaging in LMICs. A single case study was conducted, and post-contrast enhancement was successfully achieved, revealing the presence of a tumor which was subsequently confirmed on biopsy. To our knowledge, this is the first study to demonstrate the feasibility of post-contrast enhancement in a pULF-MRI scanner for brain tumor imaging. This technology has the potential to significantly improve access to neuroimaging in LMICs, leading to earlier diagnosis and more effective treatment of brain tumors. These promising results suggest that further studies are warranted to explore the potential of pULF-MRI for large-scale screening and diagnosis of brain tumors in LMICs. This can provide a future roadmap for neuroimaging in LMICs, providing a cost-effective and accessible way to diagnose and treat brain tumors, leading to improved healthcare outcomes with a further prospective clinical trial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893822PMC
http://dx.doi.org/10.3389/fnimg.2025.1507522DOI Listing

Publication Analysis

Top Keywords

brain tumors
20
post-contrast enhancement
16
access neuroimaging
8
treatment brain
8
tumors lmics
8
enhancement pulf-mri
8
pulf-mri scanner
8
scanner brain
8
brain tumor
8
tumor imaging
8

Similar Publications

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

Pituitary neuroendocrine tumors (PitNETS) are common intracranial tumors, but extrasellar or ectopic PitNETS are very rare and supposed to originate from some pituitary remnants. They are mostly found in sphenoidal sinus. But particularly, ectopic clival PitNETS are highly aggressive and can cause bone invasion and can be misdiagnosed as other lesions of the skull base such as chordomas.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples.

Sci Adv

March 2025

Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples.

View Article and Find Full Text PDF

Microfluidic isolation and release of live disseminated breast tumor cells in bone marrow.

PLoS One

March 2025

Department of Mechanical and Aerospace Engineering, Interdisciplinary Microsystems Group, Gainesville, Florida, United States of America.

Breast cancer represents a significant therapeutic challenge due to its aggressive nature and resistance to treatment. A major cause of treatment failure in breast cancer is the presence of rare, low-proliferative disseminated tumor cells (DTCs) in distant organs including the bone marrow. This study introduced a microfluidic-based approach to improve the immunodetection and isolation of these rare DTCs for downstream analysis, with an emphasis on optimizing immunocapture, release, and enrichment methods of live DTCs as compared to the standard approach for blood-borne circulating tumor cells (CTCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!