This study investigated the metabolic characteristics of mulberry wine produced by co-fermentation with (SC) and two different (PK). Although inhibited the growth of during co-fermentation, showed robust growth adaptability. Classical oenological parameters were not significantly altered by co-fermentation compared to pure-fermentation. The significantly modulated amino acid metabolism pathways during co-fermentation, enhancing the biosynthesis of higher alcohol acetate compounds. Furthermore, co-fermentation strategy promoted the production of volatile flavor compounds, particularly esters and alcohols, which enriched the wine with distinct floral and fruity flavors. This study provides novel insights into the metabolic mechanisms of co-fermentation with SC and PK strains and highlights the potential of as a co-fermentation agent for improving the aromatic complexity of fruit wines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893436PMC
http://dx.doi.org/10.3389/fnut.2025.1559599DOI Listing

Publication Analysis

Top Keywords

metabolic characteristics
8
flavor compounds
8
mulberry wine
8
co-fermentation
7
impact co-fermentation
4
co-fermentation metabolic
4
characteristics flavor
4
compounds mulberry
4
wine study
4
study investigated
4

Similar Publications

Background: Hospital studies suggest that scrub typhus is a leading cause of severe undifferentiated fever in regions across Asia where the disease is endemic, but the population-based incidence of infection and illness has been little studied.

Methods: We conducted a population-based cohort study to assess epidemiologic and clinical characteristics of scrub typhus in 37 villages in Tamil Nadu, India, where the disease is highly endemic. Study participants were visited every 6 to 8 weeks over a period of 2 years; a venous blood sample was obtained from those who had had fever since the last visit.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is one of the most common cardiac diseases and a complicating comorbidity for multiple associated diseases. Many clinical decisions regarding AF are currently based on the binary recognition of AF being present or absent with the categorical appraisal of AF as continued or intermittent. Assessment of AF in clinical trials is largely limited to the time to (first) detection of an AF episode.

View Article and Find Full Text PDF

Persistent systemic inflammation is associated with an elevated risk of cardiometabolic diseases. However, the characteristics of the innate and adaptive immune systems in individuals who develop these conditions remain poorly defined. Doublets, or cell-cell complexes, are routinely eliminated from flow cytometric and other immune phenotyping analyses, which limits our understanding of their relationship to disease states.

View Article and Find Full Text PDF

Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males.

View Article and Find Full Text PDF

Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.

Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!