Fast and efficient Sb-based type-II phototransistors integrated on silicon.

APL Photonics

Bio-Inspired Sensors and Optoelectronics Laboratory, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, USA.

Published: March 2025

Increasing the energy efficiency and reducing the footprint of on-chip photodetectors enable dense optical interconnects for emerging computational and sensing applications. While heterojunction phototransistors (HPTs) exhibit high energy efficiency and negligible excess noise factor, their gain-bandwidth product (GBP) has been inferior to that of avalanche photodiodes at low optical powers. Here, we demonstrate that utilizing type-II energy band alignment in an Sb-based HPT results in six times smaller junction capacitance per unit area and a significantly higher GBP at low optical powers. These type-II HPTs were scaled down to 2 m in diameter and fully integrated with photonic waveguides on silicon. Thanks to their extremely low dark current and high internal gain, these devices exhibit a GBP similar to the best avalanche devices (∼270 GHz) but with one order of magnitude better energy efficiency. Their energy consumption is about 5 fJ/bit at 3.2 Gbps, with an error rate below 10 at -25 dBm optical power at 1550 nm. These features suggest new opportunities for creating highly efficient and compact optical receivers based on phototransistors with type-II band alignment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892345PMC
http://dx.doi.org/10.1063/5.0233887DOI Listing

Publication Analysis

Top Keywords

energy efficiency
12
low optical
8
optical powers
8
band alignment
8
energy
5
optical
5
fast efficient
4
efficient sb-based
4
type-ii
4
sb-based type-ii
4

Similar Publications

Cesium-lead halide perovskite nanomaterials have been considered new-generation emitters that can meet the requirements of high photoluminescence efficiency and the high color standard of Rec. 2020. However, their practical application is currently hindered by the challenge of achieving better stability and growth in green solvents.

View Article and Find Full Text PDF

This research determines the potential impact of reducing food waste on future energy consumption and pollutant emissions. The study uses system dynamics modelling to simulate the complex link between population, food demand, food waste output and their interactions with energy consumption in the food system and carbon dioxide (CO) emissions. Scenarios are developed by considering two elements: a reduction in food waste and an increase in energy output.

View Article and Find Full Text PDF

Strong interaction between plasmon and topological surface state in BiSe/CuS nanowires for solar-driven photothermal applications.

Sci Adv

March 2025

Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

Developing high-performance photothermal materials and unraveling the underlying mechanism are essential for photothermal applications. Here, photothermal performance improved by strong interaction between plasmon and topological surface state (TSS) is demonstrated in BiSe/CuS nanowires. This hybrid, which CuS nanosheets were grown on BiSe nanowires, leverages the plasmon resonance and TSS-induced optical property, generating wide and efficient light absorption.

View Article and Find Full Text PDF

In distribution grids, excessive energy losses not only increase operational costs but also contribute to a larger environmental footprint due to inefficient resource utilization. Ensuring optimal placement of photovoltaic (PV) energy systems is crucial for achieving maximum efficiency and reliability in power distribution networks. This research introduces the Pelican Optimizer (PO) algorithm to optimally integrate solar PV systems to radial electrical distribution grids.

View Article and Find Full Text PDF

Electrochemical methodologies offer a transformative approach to sustainable chemical synthesis by enabling precise, energy-efficient transformations. Here, we report the selective electrochemical N-formylation of methylamine using methanol as both reagent and solvent, facilitated by a simple glassy carbon electrode. Under optimized conditions, we achieve a faradaic efficiency (FE) of 34% for methylformamide synthesis in a neutral NaClO electrolyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!