The conversion of carbon dioxide (CO), a major greenhouse gas, into light olefins is crucial for mitigating environmental impacts and utilizing non-petroleum-based feedstocks. Thermo-catalytic CO transformation into valuable chemicals offers a promising solution to this challenge. This study investigates the effect of potassium (K) and manganese (Mn) promoters on CO conversion and CH selectivity over CoFe-ZSM-5 zeolites. Structural characterization via FTIR, pyridine-FTIR, and PXRD confirmed the successful incorporation of K and Mn into CoFe-ZSM-5 at 80°C without significant structural changes to the zeolite framework. BET analysis revealed that metal incorporation did not substantially alter the surface area, while SEM and TEM analyses confirmed the preservation of ZSM-5 spherical morphology. Fixed-bed reactor experiments conducted at 350°C and 20 bar demonstrated that K and Mn synergistically enhanced CO conversion efficiency and selectivity toward CH. The K-Mn/4Fe4Co-ZSM-5 catalyst (modified with 4% Co and 4% Fe) exhibited the highest performance, achieving 97% olefin selectivity. Furthermore, Mn and K promoters reduce the CO selectivity on the Co-Fe-ZSM-5 catalyst. These findings underscore the critical role of K and Mn in facilitating efficient CO activation and directing the reaction pathway toward valuable olefin products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893857 | PMC |
http://dx.doi.org/10.3389/fchem.2025.1562436 | DOI Listing |
Angew Chem Int Ed Engl
March 2025
Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont, Institute of Organic Chemistry, 2 Magyar tudósok körútja, 1117, Budapest, HUNGARY.
The anti-Markovnikov hydrofunctionalization of terminal, unactivated olefins is an evergreen synthetic challenge in organic chemistry. Several direct and indirect anti-Markovnikov methods have been developed, ranging from the classical hydroboration/oxidation protocol to state-of-the-art photoredox catalytic, transition metal complex-catalyzed and enzymatic procedures. Despite the ever-expanding suite of synthetic capabilities, these methods still have limited generality in their substrate scope, especially with nucleophiles.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
The conversion of carbon dioxide into fuels and fine chemicals is a highly desirable route for mitigating flue gas emissions. However, achieving selectivity toward olefins remains challenging and typically requires high temperatures and pressures. Herein, we address this challenge using 12 nm copper nanoparticles supported on FeOx micro-rods, which promote the selective hydrogenation of CO to light olefins (C-C) under atmospheric pressure.
View Article and Find Full Text PDFAdv Mater
March 2025
PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China.
Exudate management and cell activity enhancement are vital to complicated wound healing. However, current exudate management dressings indiscriminately remove exudate, which is detrimental to cell activity enhancement. Herein, a novel class of electroactive bilayer (cMO/PVA) dressing is developed by constructing manganese oxide nanoneedle-clusters decorated commercial carbon cloth (MO), in situ casting polyvinyl alcohol (PVA) hydrogel, and finally charging.
View Article and Find Full Text PDFFront Chem
February 2025
South African Institute for Advanced Materials Chemistry, University of Western Cape, Cape Town, South Africa.
The conversion of carbon dioxide (CO), a major greenhouse gas, into light olefins is crucial for mitigating environmental impacts and utilizing non-petroleum-based feedstocks. Thermo-catalytic CO transformation into valuable chemicals offers a promising solution to this challenge. This study investigates the effect of potassium (K) and manganese (Mn) promoters on CO conversion and CH selectivity over CoFe-ZSM-5 zeolites.
View Article and Find Full Text PDFNat Prod Res
March 2025
Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.
The cycloartane-type triterpenes are a structurally important class of natural products with diverse biological activity. Here, we present synthetic strategies and chemical modifications for obtaining a number of recently reported cycloartane-type triterpenes, along with various close-to-natural novel derivatives. The naturally abundant beddomeilactone () serves as the key resource for most transformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!