Urea-contaminated wastewater requires extensive energy for proper treatment before safe discharge to the surroundings. Direct urea fuel cells (DUFCs) could be utilized efficiently to treat urea-polluted water and generate electricity. The precious/expensive catalyst utilized at the electrodes is one of the main significant challenges to DUFC commercialization. In this study, a non-precious standalone electrode cobalt-nickel composites directly formed using a facile hydrothermal method on a highly porous conductive nickel foam (NF) surface. The developed electrode has an excellent nano-grass morphology and demonstrates outstanding activity towards urea electro-oxidation. Using a 0.33 M urea, the current density @ 0.5 V ( Ag/AgCl) in the case of the cobalt-nickel composite with the nano-grass electrode (Co/NF) is significantly higher than that obtained using the bare NF electrode. At the same conditions, the Co/NF electrode is successfully operated for a long term (24 h) with a slight degradation in the performance, with no effect on the surface morphology. The steady-state current generated after 24 hours of cell operation is twenty times that obtained using the bare NF. The perfect performance of the modified electrode is related to the synergetic effect between Ni and Co, excellent nano-grass morphology, and ease of charge transfer. The prepared materials on the surface of the NF have a high electrochemically active surface area of 44 cm that is significantly higher than that of bare NF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894524PMC
http://dx.doi.org/10.1039/d4ra07911fDOI Listing

Publication Analysis

Top Keywords

cobalt-nickel composite
8
composite nano-grass
8
excellent nano-grass
8
nano-grass morphology
8
higher bare
8
electrode
7
nano-grass
4
nano-grass excellent
4
excellent electrode
4
urea
4

Similar Publications

Urea-contaminated wastewater requires extensive energy for proper treatment before safe discharge to the surroundings. Direct urea fuel cells (DUFCs) could be utilized efficiently to treat urea-polluted water and generate electricity. The precious/expensive catalyst utilized at the electrodes is one of the main significant challenges to DUFC commercialization.

View Article and Find Full Text PDF

The rising interest in complex oxides for energy storage applications calls for the development of efficient computational schemes that enable exploring the vast configurational space of these materials to guide and complement experiments. In this work, we adopt a high-throughput screening method based on density-functional theory to investigate the electronic-structure fingerprints of a specific stoichiometry of lithiated manganese-cobalt-nickel oxide, [Formula: see text], which are relevant for the identification of the material in X-ray spectroscopy experiments. After creating the candidate structures in an automated fashion, we inspect their structural characteristics and electronic properties focusing specifically on the Ni and O contributions to the density of states.

View Article and Find Full Text PDF

The synergistic effects of a CuFe₂O₄ and cobalt/nickel metal organic framework (Co/Ni-MOF) based composite (MOF/CuFe₂O₄) were explored for photodegradation of Bisphenol A (BPA), various MOF/CuFe₂O₄ composites were synthesized via a hydrothermal method, By adjusting CuFe₂O₄ to Co/Ni-MOF mass ratios of 2:1, 1:1, and 1:2 and were denoted as MOF/CuFe₂O₄ (2:1), MOF/CuFe₂O₄ (1:1), and MOF/CuFe₂O₄ (1:2), respectively. The composite MOF/CuFe₂O₄ (1:1) with a band gap energy (Eg) of 2.28 eV exhibited excellent photocatalytic activity achieving 98% degradation of a 10 ppm BPA solution under visible light (50 W) irradiation within 75 min, at pH 3, 25°C.

View Article and Find Full Text PDF

The heavy metals in the effluents of industries threatens the human health. In this research, aqueous two-phase systems based on two deep eutectic solvents, choline chloride/urea and betaine/urea, along with dipotassium hydrogen phosphate, were used as environmentally friendly systems to extract hexavalent chromium. Binodal curves and tie lines were obtained for two systems.

View Article and Find Full Text PDF

Cobalt-nickel metal-organic framework/activated carbon (MOF/AC) composites with tunable flower-like architectures were synthesized via a straightforward hydrothermal method, utilizing activated carbon as a structural and functional modifier. This modification increased the surface area from 20.3 m/g to 164.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!