Relating Solute-Membrane Electrostatic Interactions to Solute Permeability in Reverse Osmosis Membranes.

Environ Sci Technol

Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.

Published: March 2025

Despite the widespread use of reverse osmosis (RO) membranes in water desalination, the role of solute-membrane interactions in solute transport remains complex and relatively not well understood. This study elucidates the relationship between solute-membrane electrostatic interactions and solute permeability in RO membranes. The transport of salt and neutral molecules through charged polyamide (PA) and uncharged cellulose triacetate (CTA) RO membranes was examined. Results show that salt rejection and salt permeability in the PA membrane are highly dependent on the solution pH due to the variations of membrane charge density and the Donnan potential at the membrane-solution interface. Specifically, a higher salt rejection (and hence lower salt permeability) of the PA membrane is observed under alkaline conditions compared to acidic conditions. This observation is attributed to the enhanced Donnan potential at higher solution pH, which hinders co-ion partitioning into the membrane. In contrast, for salt transport through the CTA membrane and neutral solute transport through both membranes, solute permeability is independent of the solution pH and solute concentration due to the negligible Donnan effect. Overall, our results demonstrate the important role of solute-membrane electrostatic interactions, combined with steric exclusion, in regulating solute permeability in RO membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c13212DOI Listing

Publication Analysis

Top Keywords

solute permeability
16
solute-membrane electrostatic
12
electrostatic interactions
12
interactions solute
12
reverse osmosis
8
osmosis membranes
8
role solute-membrane
8
solute transport
8
permeability membranes
8
salt rejection
8

Similar Publications

Supporting islet function in a PVDF membrane based macroencapsulation delivery device by solvent non-solvent casting using PVP.

PLoS One

March 2025

Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.

Type 1 diabetic (T1D) patients are life-long dependent on insulin therapy to keep their blood glucose levels under control. An alternative cell-based therapy for exogenous insulin injections is clinical islet transplantation (CIT). Currently the widespread application of CIT is limited, due to risks associated with the life-long use of immunosuppressive drugs to prevent rejection of donor cells.

View Article and Find Full Text PDF

Typical investigations into the biological consequences of suspected xenobiotics or nutrients introduced in watersheds include analytical chemistry screens of environmental samples-such as periphyton responses or studies of fish condition-which are all costly in terms of equipment, reagents, time, and human resources. An alternative is to assess pollutant effects on waterborne bacteria. A flow cytometric method was developed to yield rapid, same-day results that could be used to proactively screen for suspected chemical inputs into watersheds using water sampling methods that are identical to those in standard use.

View Article and Find Full Text PDF

The underlying mechanisms governing the interactions between nanoparticles and vascular endothelial barrier remain largely unexplored, which is crucial for the optimal design of nanoparticles for clinical applications. In this study, the size-dependent interactions between calciprotein particles (CPPs) and endothelial cells (ECs) were investigated using a rat model of chronic kidney disease (CKD) induced by 5/6 nephrectomy. Two primary types of CPP1 were studied: small-sized CPP1 (S-CPP1, <50 nm) and larger CPP1 (L-CPP1, <100 nm), detected three and five weeks post-surgery, respectively.

View Article and Find Full Text PDF

Relating Solute-Membrane Electrostatic Interactions to Solute Permeability in Reverse Osmosis Membranes.

Environ Sci Technol

March 2025

Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.

Despite the widespread use of reverse osmosis (RO) membranes in water desalination, the role of solute-membrane interactions in solute transport remains complex and relatively not well understood. This study elucidates the relationship between solute-membrane electrostatic interactions and solute permeability in RO membranes. The transport of salt and neutral molecules through charged polyamide (PA) and uncharged cellulose triacetate (CTA) RO membranes was examined.

View Article and Find Full Text PDF

Edema, characterized by the accumulation of interstitial fluid, poses significant challenges in various pathological conditions. Lymphangiogenesis is critical in edema clearance, and delayed or inadequate lymphatic responses significantly hinder healing processes. However, real-time observation of dynamic changes in lymphangiogenesis during tissue repair in animal models has been challenging, leaving the mechanisms behind compensatory lymphatic activation for edema clearance largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!