Background: An essential component of cell development, proliferation, and survival is the transmembrane receptor known as the epidermal growth factor receptor (EGFR). Dysregulated EGFR signalling is an appealing pathway that has been linked to the genesis and progression of several cancer types. EGFR tyrosine kinase inhibitors (TKIs) are targeted drugs that show promise in the fight against cancer. EGFR tyrosine kinase inhibitors obstruct cancer growth and survival signalling pathways by blocking the receptor's tyrosine kinase domain. Patients with non-small cell lung cancer (NSCLC) that have EGFR mutations have shown increased progression-free survival and overall survival rates when treated with EGFR TKIs as compared to conventional chemotherapy, according to many clinical studies.
Objectives: This review is aimed to present the journey of EGFR-tyrosine kinase inhibitors, their signalling cascade, and various resistant mechanisms.
Methods: The literature search was carried out on electronic databases like PubMed, Medline, etc., by employing search keywords, such as EGFR, EGFR inhibitors, cancer, tyrosine kinase, etc., and data on EGFR signaling pathways and the types of potential inhibitors in a hierarchical manner, followed by various resistance mechanisms that have emerged, were collected.
Results: Drug resistance is still an issue in long-term therapy of patients, even though EGFR TKIs provide substantial therapeutic advantages. Common routes of resistance to EGFR TKIs include acquired resistance mechanisms, which include the development of secondary EGFR mutations and the activation of alternative signalling pathways. To improve the therapeutic effectiveness of EGFR TKIs, future research will center on searching indicators of response and resistance, finding ways to employ these medicines most effectively, and creating new treatment approaches.
Conclusion: This review provides insight into the use of EGFR kinase inhibitors for treating cancer patients and outlines potential advancements in current therapies to develop more effective molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0113816128349342250121053445 | DOI Listing |
J Immunol
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States.
Poliovirus receptor (PVR) ligands have gained attention as immunotherapy targets, yet their regulation remains unclear. Here, we examine the impact of PVR exposure on primary human CD8+ T cells. We used flow cytometry and Western blot analysis to quantify expression of PVR and its ligands in naïve and effector T cells and used adhesion assays and enzyme-linked immunosorbent assay (ELISA) to assess the impact of PVR on T cell adhesion and cytokine production.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.
View Article and Find Full Text PDFDiscov Oncol
March 2025
Department of Thoracic Oncology, Hangzhou Cancer Hospital, Zhejiang Chinese Medical University, No. 34, Yanguan Lane, Hangzhou, 310002, People's Republic of China.
Lung cancer remains the leading cause of cancer-related deaths globally. In China, nearly half of non-small cell lung cancer (NSCLC) patients carry epidermal growth factor receptor (EGFR) mutations. EGFR tyrosine kinase inhibitors (EGFR-TKIs) have significantly improved the prognosis for patients with EGFR mutations and are considered the preferred treatment for these individuals.
View Article and Find Full Text PDFMol Biol Rep
March 2025
MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK.
Background: Achaete-Scute complex homolog 1 (ASCL1) is a multi-faceted pro-neural transcription factor, playing a role in several processes during embryonic development and into adulthood, including neural progenitor proliferation and neuronal differentiation. This versatility is achieved through tightly controlled expression of ASCL1, either via integrating intracellular signalling cues or stabilisation at the protein level. The role of kinases in ASCL1-mediated neurogenesis is emerging, but to date few kinases have been attributed to act directly or indirectly on ASCL1.
View Article and Find Full Text PDFCells
March 2025
Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China.
Diabetic kidney disease (DKD) is a prevalent complication associated with diabetes in which podocyte dysfunction significantly contributes to the development and progression of the condition. Ring finger protein 183 (RNF183) is an ER-localized, transmembrane ring finger protein with classical E3 ligase activity. However, whether RNF183 is involved in glomerular podocyte dysfunction, which is the mechanism of action of DKD, is still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!