Objective: Preliminary investigations into the swelling of human hair upon absorbing moisture have been performed to better understand the roles of the various hair morphological subcompartments and their response to moisture.
Methods: The isotherms of moisture sorption exhibited by hair were recorded via Dynamic Vapour Sorption (DVS) for separated cuticle and for cortex. Atomic Force Microscopy (AFM) imaging and nanoindentation were used to follow the changes in measured distances on the same areas of cuticle layers and cortex cells from a single fibre cross section, and to evaluate the change in these distances with changes in relative humidity.
Results: The data acquired by DVS moisture sorption and by AFM for the various morphological components of the hair fibre allowed for the evaluation of their swelling. The values were then used for estimating the cross-linking density of each morphological component. A relationship between the mechanics of the cortex and the cuticle of the fibre and their cross-linking density values was found to follow logarithmic-like dependencies. The size of the crosslink meshes at 90% RH was also evaluated and found to be of the length of the stretched disulfide bond.
Conclusion: The analysis of hair swelling provides information on the crosslinks inside the fibre. The models used for calculating the crosslink density and the size of the meshes, as well as the relationship suggested graphically between the crosslinking density values and Young's Modulus, point to cystine as the decisive factor in the swelling process; the different amounts of cystine in each morphological component lead to different values of their crosslinking density and to their differing responses to mechanical stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ics.13061 | DOI Listing |
Tissue Eng Regen Med
March 2025
Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
Background: Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS).
Methods: To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer.
J Mol Model
March 2025
Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello (UNAB), Av. República 275, Santiago, 8370146, Región Metropolitana, Chile.
Context: The conversion of carbon dioxide into methanoic acid through direct hydrogenation with H in the gas phase implies overcoming a high activation energy (more than 60 kcal mol ) that makes the process kinetically infeasible. In this study, the use of the [(PY Me )Mo(III)(H)(OH)] complex instead of H lowered the activation energy of the hydrogenation by 98.5%.
View Article and Find Full Text PDFJ Mol Model
March 2025
College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an 271018, China.
Context: TEMPO-oxidized cellulose nanofibers (TOCNFs) show significant potential for developing high-performance resistive humidity sensors due to their hydrophilicity and structural adaptability. However, the underlying atomic-scale mechanisms governing their humidity response remain poorly understood. Using molecular dynamics simulations, this study investigates how crystal facets, nanopore widths, and humidity levels influence the surface wettability, water permeability, and swelling of TOCNFs.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Optical Engineering, School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Wet etching is the mainstream fabrication method for single-bar quantum cascade lasers (QCLs). Different etching solutions result in varying etching effects on III-V semiconductor materials. In this study, an efficient and nearly ideal etching solution ratio was proposed for simultaneously etching both InP and GaInAs/AlInAs, and the surface chemical reactions induced by each component of the etching solution during the process were investigated.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
State Key Laboratory of Radio Frequency Heterogeneous Integration, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
The morphology modulation of target crystals is important for understanding their growth mechanisms and potential applications. Herein, we report a convenient method for modulating the morphology of MoO by controlling different growth temperatures. With an increase in growth temperature, the morphology of MoO changes from a nanoribbon to a nanoflake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!