In recent years, numerous genetic variants have been linked with prelingual hearing loss (HL). Variants in the LOXHD1 gene (lipoxygenase homology domain-1) associated with DFNB77 are highly heterogeneous, with different auditory characteristics varying from stable to progressive and mild to profound. To date, 168 DFNB77 cases have been recorded worldwide. Forty-one hearing-impaired (HI) probands, who were previously excluded for a set of four common deafness-causing genes (viz., GJB2, GJB6, SLC26A4, and CDH23) from 33 HI families, were subjected to clinical exome sequencing (CES) involving 285 genes associated with HL. This was followed by a segregation analysis of the available members in the family. We identified two pathogenic LOXHD1 variants in two unrelated inbred families. One is a novel homozygous pathogenic nonsense variant (c.3999C > A; p.C1333X), whereas the other is a likely pathogenic missense variant (c.6046G > T; p.E2046K). In silico tools such as SIFT, PolyPhen-2, Mutation Taster, CADD, and REVEL scores were used to predict variant pathogenicity. Furthermore, American College of Medical Genetics and Genomics guidelines specific to HL were applied to finally classify a variant as pathogenic or otherwise. The frequency of LOXHD1 variants identified in our study is 4.88% (2/41). This is the first LOXHD1 report associated with non-syndromic HL in South Indian families.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ahg.12593 | DOI Listing |
Ann Hum Genet
March 2025
Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India.
In recent years, numerous genetic variants have been linked with prelingual hearing loss (HL). Variants in the LOXHD1 gene (lipoxygenase homology domain-1) associated with DFNB77 are highly heterogeneous, with different auditory characteristics varying from stable to progressive and mild to profound. To date, 168 DFNB77 cases have been recorded worldwide.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Kunming, Yunnan Province, China.
Purpose: To explore possible pathogenic genes for concomitant exotropia using whole-exome sequencing.
Methods: In this study, 47 individuals from 10 concomitant exotropia (including intermittent exotropia and constant exotropia) pedigrees were enrolled. Whole-exome sequencing was used to screen mutational profiles in 25 affected individuals and 10 unaffected individuals.
Zoolog Sci
December 2024
Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan,
Due to limited spawning seasons, embryogenesis of corals has not fully been studied and the embryonic origin of gastrodermis remains uncertain in . We herein examined how embryonic endodermal cells develop into the gastrodermis and mesentery of polyps in . In juvenile polyps, the gastrodermis invaginates to form mesenteries, both of which were stained with rhodamine-phalloidin, an anti-myocyte-specific enhancer factor 2 (anti-AtMef2) antibody, and an anti-lipoxygenase homology domain-containing protein 1 (anti-AtLoxhd1) antibody.
View Article and Find Full Text PDFBr J Haematol
November 2024
National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Mol Genet Genomic Med
June 2024
Medical Genetics Center; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases Lanzhou, Gansu Provincial Maternity and Child-Care Hospital, Gansu, China.
Background: Hearing loss (HL) is the most frequent sensory deficit in humans, with strong genetic heterogeneity. The genetic diagnosis of HL is very important to aid treatment decisions and to provide prognostic information and genetic counselling for the patient's family.
Methods: We detected and analysed 362 Chinese non-syndromic HL patients by screening of variants in 15 hot spot mutations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!