Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing active, stable, and cost-effective acidic oxygen evolution reaction (OER) catalyst is a critical challenge in realizing large-scale hydrogen (H) production via electrochemical water splitting. Utilizing highly active and relatively inexpensive Ru is generally challenged by its long-term durability issue. Here, we explore the potential of stabilizing active Ru sites in Ru(Ir,Fe,Co,Ni) multicomponent alloy by investigating its phase formation behavior, OER performance, and OER-induced surface reconstruction. The alloy exhibited a multiphase structure composed of major face-centered cubic (fcc) and minor hexagonal close-packed (hcp) phases at near equimolar concentration. Machine-learned interatomic potential (MLIP) coupled with replica-exchange molecular dynamics was utilized to describe the atomic scale mixing behavior of the Ru(Ir,Fe,Co,Ni) catalysts and other RuIr-based alloys. The model supports our experimental findings of the well-mixed bulk fcc phase and provides an indication of the minor hcp phase formation. The optimized Ru(Ir,Fe,Co,Ni) catalyst exhibited improved OER activity with an average overpotential of ∼237 mV measured at 10 mA cm and enhanced stability with a low activity degradation rate of ∼1.1 mV h in 24 h of operation. The acidic OER conditions induced the formation of a thin RuIr-rich oxide shell layer with a trace amount of 3d metals, where Ru was found to be relatively stabilized near the surface of the evolved nanoparticles. The machine learning-accelerated high throughput simulation protocol was further employed to screen other potential RuIr-containing quinary alloys based on expected phase stability. This work highlights the opportunity of stabilizing Ru in a multicomponent alloy matrix with improved activity and stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c16638 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!