Moscatilin, a biphenyl compound derived from Dendrobium nobile, exhibits significant anti-tumor activity. However, the specific role of moscatilin in clear cell renal cell carcinoma (ccRCC) and its underlying molecular mechanisms have not been fully studied. This study aims to fill this gap by demonstrating through a series of experiments that moscatilin can effectively inhibit the proliferation and migration of ccRCC and induce its apoptosis process. More importantly, we found that moscatilin can also trigger ferroptosis in ccRCC, a process accompanied by significant increases in Fe, MDA (a lipid peroxidation product), and ROS (reactive oxygen species) levels, as well as decreases in mitochondrial membrane potential and GSH (glutathione) levels. These changes strongly suggest a key role for moscatilin in inducing ferroptosis. To further explore its underlying mechanism, we speculate that moscatilin may inhibit the phosphorylation level of the JAK-STAT signaling pathway, thereby blocking the function of the key protein SLC7A11 in the ferroptosis signaling pathway, which promotes the occurrence of ferroptosis. This discovery not only reveals a new mechanism of moscatilin in the treatment of ccRCC but also provides new ideas for the development of related drugs in the future. In summary, based on the important discovery that moscatilin can induce ferroptosis in ccRCC, we have reason to believe that moscatilin has the potential to become a new type of drug for the treatment of ccRCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.70071 | DOI Listing |
J Cell Mol Med
March 2025
Hepatobiliary Center, the First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Medical Research Experimental Center, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, China.
Exosomes are nanoscale extracellular vesicles widely present in various body fluids. They carry a variety of substances, including proteins, lipids, and nucleic acids, and play significant roles in the body by participating in immune regulation, intercellular signal transduction, and the transport of proteins and nucleic acids. Exosomes can regulate tumor development and drug resistance by modulating ferroptosis.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: With the aging population, the incidence of intervertebral disc degeneration (IDD) is increasing every year. The pathogenesis of IDD is complex, and there are currently no effective treatment options. This study aims to investigate the specific function and underlying mechanism of zinc finger protein 667 (ZNF667) in the inflammatory damage of nucleus pulposus cells in IDD.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008.
Objectives: Sleep deprivation (SD) is a risk factor for the development of chronic pain in adolescents, significantly affecting pain management and prognosis; however, the mechanisms by which SD influences postoperative pain outcomes remain unclear. This study aims to investigate the molecular mechanism through which the spinal 5-hydroxytryptamine 1 receptor (5-HT1R) regulates the excitation/inhibition (E/I) balance in the dorsal horn to modulate postoperative chronic pain induced by SD in adolescent mice.
Methods: A pain model combining 4.
Cold Spring Harb Protoc
March 2025
Department of Ecology, University of Chicago, Chicago, Illinois 60637, USA.
Understanding how the auxin hormone signaling pathway components come together to orchestrate cellular responses is key to engineering the growth and development of maize. Although a variety of techniques exist to measure auxin activities in plants, many are time- and resource-intensive or do not easily allow for high-throughput quantitative measurement of component libraries. The AuxInYeast system is a synthetic biology tool that facilitates complex biochemical analysis of the auxin hormone signaling pathway from essentially any plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!