Methicillin-resistant Staphylococcus aureus (MRSA) achieves high-level resistance against β-lactam antibiotics through the expression of penicillin-binding protein 2a (PBP2a), which features a closed active site that impedes antibiotic binding. Herein, we implemented a strategy that combines drug repurposing with synergistic therapy to identify potential inhibitors targeting PBP2a's allosteric site from an FDA-approved drug database. Initially, retrospective verifications were conducted, employing different Glide docking methods (HTVS, SP, and XP) and two representative PBP2a structures. The combination of Glide SP and one representative PBP2a conformation showed the highest efficacy in identifying active compounds. The optimized parameters were then utilized to screen FDA-approved drugs, and 15 compounds were shortlisted for potential combination therapy with cefazolin, an ineffective cephalosporin against MRSA. Through biological assays-checkerboard, time-kill assays, and live/dead bacterial staining-we discovered that four compounds exhibited robust bactericidal activity (FICI < 0.5) compared to both untreated control and monotherapy with cefazolin alone. Scanning electron microscopy (SEM) confirmed that while cefazolin alone did not cause visible damage to MRSA cells, the combination treatment markedly induced cell lysis. Additional MM-GBSA studies underscored the strong binding affinity of mitoxantrone to the allosteric site. These findings introduce a combination therapy approach that potentially restores MRSA's susceptibility to β-lactam antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.70088 | DOI Listing |
Ophthalmol Ther
March 2025
Team "Staphylococcal Pathogenesis", CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.
Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of sight-threatening infections in the US. These strains pose a significant challenge in managing ocular infections, as they frequently exhibit resistance to first-line empirical antibiotics. To assess the potential of bacteriophages as innovative topical therapies for treatment of recalcitrant ocular infections, we evaluated the in vitro antimicrobial activity of a set of anti-S.
View Article and Find Full Text PDFMicrobiol Spectr
March 2025
Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
Unlabelled: , previously misidentified as , was first described as a new species in 2020. In this study, we aimed to describe the clinical relevance of by combining clinical data, antibiotic susceptibility profiles, and biofilm formation in isolates obtained from hospitalized and non-hospitalized patients. We established a collection of 129 .
View Article and Find Full Text PDFChem Biol Drug Des
March 2025
Centre in Artificial Intelligence Driven Drug Discovery, Applied Sciences, Macao Polytechnic University, Macao, China.
Methicillin-resistant Staphylococcus aureus (MRSA) achieves high-level resistance against β-lactam antibiotics through the expression of penicillin-binding protein 2a (PBP2a), which features a closed active site that impedes antibiotic binding. Herein, we implemented a strategy that combines drug repurposing with synergistic therapy to identify potential inhibitors targeting PBP2a's allosteric site from an FDA-approved drug database. Initially, retrospective verifications were conducted, employing different Glide docking methods (HTVS, SP, and XP) and two representative PBP2a structures.
View Article and Find Full Text PDFBMC Oral Health
March 2025
Department of Microbiology and Immunology, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
Background: The nose is the primary colonization site of S. aureus which is a known risk factor for causing S. aureus infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!