This discussion paper carefully analyzes the cognition-related theories proposed for behavioral economics, to expand the concepts from human behaviors to those of plants. Behavioral economists analyze the roles of the intuitive sense and the rational thoughts affecting the human behavior, by employing the psychology-based models such as Two Minds theory (TMT) highlighting intuitive rapid thoughts (System 1) and rational slower thoughts (System 2) and Prospect theory (PT) with probability ()-weighting functions explaining the human tendencies to overrate the low events and to underrate the high events. There are similarities between non-consciously processed System 1 (of TMT) and overweighing of low- events (as in PT) and also, between the consciously processed System 2 (of TMT) and underrating of high- events (as in PT). While most known -weighting mathematical models employed single functions, we propose a pair of Hill-type functions reflecting the collective behaviors of two types of automata corresponding to intuition (System 1) and rationality (System 2), as a metaphor to the natural light processing in layered plant leaves. Then, the model was applied to two different TMT/PT-related behaviors, namely, preference reversal and habituation. Furthermore, we highlight the behaviors of plants through the above conceptual frameworks implying that plants behave as if they have Two Minds. Lastly, the possible evolutionary origins of the nature of Two Minds are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15592324.2025.2474895 | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette 91198, France.
is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process.
View Article and Find Full Text PDFPLoS One
March 2025
Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, Southwest Forestry University, Kunming, Yunnan, China.
Rhus chinensis, a native plant species of China, possesses significant economic value in the ornamental sector. This study investigates the floral fragrance components and release patterns of R. chinensis, thus providing a theoretical foundation for the utilization of its floral fragrance.
View Article and Find Full Text PDFJ Chem Ecol
March 2025
Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, 90128, Italy.
Floral nectar is a sugar-rich resource which is ubiquitously inhabited by a wide array of microorganisms. Fermentation by nectar-inhabiting microbes can alter several nectar traits, including nectar scent, via changes in the blend of volatile organic compounds (VOCs). Although there is growing evidence on how yeasts and bacteria influence the foraging behavior of flower-visiting insects, the potential role of other microbial taxa that can colonize nectar has been largely neglected.
View Article and Find Full Text PDFMetab Brain Dis
March 2025
Department of Biochemistry, Faculty of Sciences, University of Uyo, Uyo, Nigeria.
Kindling is an experimental-induced seizure consistent with epilepsy disease, a chronic neurological disorder characterised by spontaneous and repeated seizures. This disease is associated with oxidative stress, and most therapeutic strategies against epilepsy aim at improving the antioxidant defence mechanism in the brain. However, prolonged usage and associated adverse side effects limit antiepileptics, warranting natural antioxidant patronage.
View Article and Find Full Text PDFJ Chem Ecol
March 2025
International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
The fall armyworm (FAW), Spodoptera frugiperda, is a serious invasive crop pest and threat to food security. Conventional pest control approaches using chemical pesticides can lead to adverse environmental and human health problems calling for safer alternative pest management options. Volatile organic compounds (VOCs) released by plants constitutively and in response to herbivory have been shown to enhance ecologically benign biocontrol alternatives to chemical insecticides for pest management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!