Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The beam walk is widely used to study coordination and balance in rodents. While the task has ethological validity, the main endpoints of "foot slip counts" and "time to cross" are prone to human-rater variability and offer limited sensitivity and specificity. We asked if machine learning-based methods could reveal previously hidden, but biologically relevant, insights from the task. Marker-less pose estimation, using DeepLabCut, was deployed to label 13 anatomical key points on mice traversing the beam. Next, we automated classical endpoint detection, including foot slips, with high recall (> 90%) and precision (> 80%). Using data derived from key point tracking, a total of 395 features were engineered and a random forest classifier deployed that, together with skeletal visualizations, could test for group differences and identify determinant features. This workflow, named Forestwalk, uncovered pharmacological treatment effects in C57BL/6J mice, revealed phenotypes in transgenic mice used to study Angelman syndrome and SLC6A1-related neurodevelopmental disorder, and will facilitate a deeper understanding of how the brain controls balance in health and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.70033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!