A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microplastic-Induced Alterations in Soil Aggregate-Associated Carbon Stabilization Pathways: Evidence from δC Signature Analysis. | LitMetric

Microplastic-Induced Alterations in Soil Aggregate-Associated Carbon Stabilization Pathways: Evidence from δC Signature Analysis.

Environ Sci Technol

Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.

Published: March 2025

Microplastics (MPs) are known to affect soil carbon stability in a numerous ways. However, the mechanisms by which they alter the carbon stability within soil aggregates remain unclear . Herein, a one-year field experiment was conducted in an arid agricultural region employing stable isotope techniques to evaluate the soil organic carbon flow in the presence of both persistent (PE, PVC) and biodegradable (PLA, PHA) MPs. PE and PVC reduced the stability of soil aggregates, while PLA and PHA maintained it. Additionally, organic carbon content increased in microaggregates but decreased in small macroaggregates for PE and PVC treatments. By contrast, treatment with PLA and PHA enhanced organic carbon content across aggregates. The δC values of PE- and PVC-treated aggregates ranged from -25.34 to -20.85‰, while those of PLA and PHA ranged from -16.29 to -9.26‰. Notably, MPs altered the direction of carbon flow between aggregates, reduced carbon flux, and accelerated carbon emissions. RFP and PLS-PM analyses revealed that persistent MPs affected carbon flow primarily via abiotic factors, whereas biodegradable MPs influenced it via biotic factors. These findings provide insights into the mechanisms by which MPs impact aggregate-associated carbon, highlighting their effects on soil ecosystem services.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c09242DOI Listing

Publication Analysis

Top Keywords

pla pha
16
organic carbon
12
carbon flow
12
carbon
11
aggregate-associated carbon
8
carbon stability
8
stability soil
8
soil aggregates
8
carbon content
8
soil
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!