Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The electrocatalytic oxidation of benzyl alcohol to benzoic acid is a process that often requires high voltage, leading to increased energy consumption, side reactions (oxygen evolution reaction (OER)), and catalyst degradation. Herein, our study introduces a novel approach. We demonstrate that a PtZn-ZnO catalyst featuring a PtZn intermetallic structure with abundant PtZn-ZnO interfaces on the surface allows for the electrocatalytic oxidation of benzyl alcohol to benzoic acid with an impressive selectivity of 99.5% at a low potential of 0.725 V (vs a reversible hydrogen electrode, RHE), which is 0.6 V lower than most reported studies. This high selectivity is a testament to the efficiency of our catalyst, as it significantly reduces the occurrence of side reactions, leading to a more efficient and sustainable process. The experimental and density functional theory calculations demonstrated that the adsorption of Ph-CHOH and Ph-CHO and the generation of electrophilic OH* were promoted due to the unsaturated coordination of the Zn atom in the PtZn-ZnO interfaces. Furthermore, the potential-determining step of coupling OH* with Ph-CHO was promoted due to the low energy barrier at the PtZn-ZnO interface, leading to improved catalytic activity and selectivity. This study outlines a novel approach to designing highly efficient electrocatalysts for high-efficiency alcohol valorization at low voltages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c17193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!