Despite the high frequency of pregnancies complicated by abnormal glucose metabolism associated with obesity, methylmercury (MeHg) metabolism in pregnant women with abnormal glucose metabolism is unclear. We aimed to elucidate the MeHg tissue distribution in obese female mice with abnormal glucose metabolism and their fetuses. Female C57BL/6J mice were fed a high-fat diet (HFD) or a standard diet (Ctrl) for 12 weeks and mated. HFD mice showed mild glucose metabolism abnormalities as assessed by an oral glucose tolerance test. Maternal tissues (brain, liver, and kidney) and blood (plasma and blood cells) and fetal tissues (brain, liver, kidney, and placenta) were collected from these mice 24 h after oral administration of MeHg (a single dose of 1 or 5 mg Hg/kg) on Day 16 of mating. The total mercury level was determined in each sample, and its distribution to each tissue was estimated using K values (total mercury in each tissue/total mercury in maternal plasma). The K values for the maternal brain and liver were lower in HFD mice than in Ctrl mice, but no significant difference between groups was observed in the kidney or blood cells. The K values for all fetal tissues were lower in HFD mice than in Ctrl mice. Pregnant mice showed higher K values for the brain and lower K values for the kidney than those in nonpregnant mice, regardless of diet. These results will provide useful information to assess the risk of MeHg in obese mothers with glucose metabolism abnormalities and their fetuses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.4777DOI Listing

Publication Analysis

Top Keywords

glucose metabolism
20
abnormal glucose
12
hfd mice
12
brain liver
12
mice
11
tissue distribution
8
pregnant mice
8
metabolism abnormalities
8
tissues brain
8
liver kidney
8

Similar Publications

Context: In 2023, we employed Dexcom G6 for real-time continuous glucose monitoring (rt-CGM); it showed high usefulness but unsatisfactory accuracy in type 1 diabetes summer camp (camp) participants.

Objective: To assess the usefulness, recommendation and accuracy of a new rt-CGM system in camp, 2024.

Methods: Sensor glucose (SG) concentrations were measured by Dexcom G7 (G7) from 6 days prior to camp.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Diabetic nephropathy is a severe chronic complication characterized by cytotoxicity, inflammation, and fibrosis, ultimately leading to renal failure. This study systematically investigated the effects of the PARP1 inhibitor PJ-34 on high glucose-induced cytotoxicity, inflammation, and fibrosis in HK-2 cells, as well as its improvement on neuropathic pain response and transforming growth factor β (TGFβ) expression in a type 1 diabetes mellitus diabetic nephropathy mouse model. Through cellular and animal experiments, we observed that PJ-34 significantly enhanced the proliferative capacity of cells damaged by high glucose, reduced apoptosis, and decreased the release of proinflammatory factors TGFα, interleukin-6, and interleukin-1β.

View Article and Find Full Text PDF

Itaconate restrains acute proinflammatory activation of microglia MG after traumatic brain injury in mice.

Sci Transl Med

March 2025

Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA.

Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 ()], is a pivotal metabolic regulator in immune cells, particularly in macrophages.

View Article and Find Full Text PDF

Persistent systemic inflammation is associated with an elevated risk of cardiometabolic diseases. However, the characteristics of the innate and adaptive immune systems in individuals who develop these conditions remain poorly defined. Doublets, or cell-cell complexes, are routinely eliminated from flow cytometric and other immune phenotyping analyses, which limits our understanding of their relationship to disease states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!