Ammonia-oxidising archaea (AOA) are important microorganisms contributing towards the nitrogen flux in the environment. Unlike archaea from other major phyla, genetic tools are yet to be developed for the AOA, and identification of antibiotic resistance markers for selecting mutants is required for a genetic system. The aim of this study was to test the effects of selected antibiotics (hygromycin B, neomycin, apramycin, puromycin, novobiocin) on pure cultures of three well studied AOA strains, 'Candidatus Nitrosocosmicus franklandianus C13', Nitrososphaera viennensis EN76 and Nitrosopumilus maritimus SCM1. Puromycin, hygromycin B and neomycin inhibited some but not all tested archaeal strains. All strains were resistant to apramycin and inhibited by novobiocin to various degrees. As N. viennensis EN76 was relatively more resistant to the tested antibiotics, a wider range of concentrations and compounds (chloramphenicol, trimethoprim, statins) was tested against this strain. N. viennensis EN76 was inhibited by trimethoprim, but not by chloramphenicol, and growth recovered within days in the presence of simvastatin, suggesting either degradation of, or spontaneous resistance against, this compound. This study highlights the physiological differences between different genera of AOA and has identified new candidate antibiotics for selective enrichment and the development of selectable markers for genetic systems in AOA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.70063 | DOI Listing |
Environ Microbiol
March 2025
School of Biological Sciences, University of East Anglia, Norwich, UK.
Ammonia-oxidising archaea (AOA) are important microorganisms contributing towards the nitrogen flux in the environment. Unlike archaea from other major phyla, genetic tools are yet to be developed for the AOA, and identification of antibiotic resistance markers for selecting mutants is required for a genetic system. The aim of this study was to test the effects of selected antibiotics (hygromycin B, neomycin, apramycin, puromycin, novobiocin) on pure cultures of three well studied AOA strains, 'Candidatus Nitrosocosmicus franklandianus C13', Nitrososphaera viennensis EN76 and Nitrosopumilus maritimus SCM1.
View Article and Find Full Text PDFISME Commun
January 2024
Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea.
Soil microorganisms often thrive as microcolonies or biofilms within pores of soil aggregates exposed to the soil atmosphere. However, previous studies on the physiology of soil ammonia-oxidizing microorganisms (AOMs), which play a critical role in the nitrogen cycle, were primarily conducted using freely suspended AOM cells (planktonic cells) in liquid media. In this study, we examined the growth of two representative soil ammonia-oxidizing archaea (AOA), EN76 and "" MY2, and a soil ammonia-oxidizing bacterium, ATCC 19718 on polycarbonate membrane filters floated on liquid media to observe their adaptation to air-exposed solid surfaces.
View Article and Find Full Text PDFFEMS Microbiol Lett
May 2022
School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
Ammonia-oxidising archaea (AOA) are environmentally important microorganisms involved in the biogeochemical cycling of nitrogen. Routine cultivation of AOA is exclusively performed in liquid cultures and reports on their growth on solid medium are scarce. The ability to grow AOA on solid medium would be beneficial for not only the purification of enrichment cultures but also for developing genetic tools.
View Article and Find Full Text PDFFront Microbiol
July 2020
Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
The naturally occurring nitrogen (N) isotopes, N and N, exhibit different reaction rates during many microbial N transformation processes, which results in N isotope fractionation. Such isotope effects are critical parameters for interpreting natural stable isotope abundances as proxies for biological process rates in the environment across scales. The kinetic isotope effect of ammonia oxidation (AO) to nitrite (NO ), performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), is generally ascribed to the enzyme ammonia monooxygenase (AMO), which catalyzes the first step in this process.
View Article and Find Full Text PDFRes Microbiol
November 2020
University of Vienna, EDGE- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, UZA2, 1090, Vienna, Austria; University of Vienna, Environmental Science Research Network (ESRN), Faculty for Geosciences, Geography and Astronomy, Althanstrasse 14, UZA2, 1090, Vienna, Austria. Electronic address:
Ammonia oxidizing archaea (AOA) inhabiting soils have a central role in the global nitrogen cycle. Copper (Cu) is central to many enzymes in AOA including ammonia monooxygenase (AMO), the enzyme involved in the first step of ammonia oxidation. This study explored the physiological response of the AOA soil isolate, Nitrososphaera viennensis (EN76) to Cu-limiting conditions in order to approach its limiting threshold under laboratory conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!