Asymmetric organocatalysis by bifunctional acid- and base-type small organic molecules has emerged as a promising way to enhance stereoselective organic transformations since the beginning of this millennium. Takemoto's -amine/thiourea catalyst, an archetype in these endeavors, has encouraged many to design new multifunctional alternatives. However, the discovery of efficient catalysts in a library of thousands of candidates containing the desired functionalities in their structures remains a great challenge both synthetically and computationally. We, toward these ends, developed a computational protocol (CIPOC─Computational Identification of POtential (Organo)Catalysts), which discovered a chiral 2-aminoDMAP/urea catalyst among 1600 multifunctional catalyst candidates enabling conjugate addition of malonates to -β-nitroalkenes rapidly (in a few hours) with exquisite selectivities and yields, producing superior results than that of Takemoto's. The unique activity of this chiral 2-aminoDMAP/urea is attributed to the dual function of the 2-aminoDMAP unit (double H-bonding and π-stacking interactions) in addition to the exceptional performance of the urea unit compared to thiourea, as a result of a lower energetic penalty required to distort the catalyst to its active conformation to provide optimal catalytic interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c10634DOI Listing

Publication Analysis

Top Keywords

identification potential
8
potential organocatalysts
8
2-aminodmap/urea catalyst
8
chiral 2-aminodmap/urea
8
catalyst
5
computational identification
4
organocatalysts cipoc
4
cipoc reveals
4
reveals 2-aminodmap/urea
4
catalyst superior
4

Similar Publications

Stone pine (Pinus pinea L.) is an emblematic tree species within the Mediterranean basin, with high ecological and economic relevance due to the production of edible nuts. Breeding programmes to improve pine nut production started decades ago in Southern Europe but have been hindered by the near absence of polymorphisms in the species genome and the lack of suitable genomic tools.

View Article and Find Full Text PDF

Precise Identification of Inhibitors for Coagulation Reactions from Complex Extracts through Monitoring of Biological Aggregates Combined with a Targeted Fishing Technique.

Anal Chem

March 2025

Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.

Biological aggregates play a crucial role in the pathogenesis of thrombotic diseases, especially thrombin-induced biological aggregates. Therefore, the efficient discovery of thrombin inhibitors is of great significance for the prevention and treatment of thrombotic diseases. In this study, the aggregation precursor protein fluorescent probe was successfully prepared for monitoring the production of biological aggregates induced by thrombin.

View Article and Find Full Text PDF

Combatting antibiotic resistance in Gardnerella vaginalis: A comparative in silico investigation for drug target identification.

PLoS One

March 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.

Gardnerella vaginalis is the most frequently identified bacterium in approximately 95% of bacterial vaginosis (BV) cases. This species often exhibits resistance to multiple antibiotics, posing challenges for treatment. Therefore, there is an urgent need to develop and explore alternative therapeutic strategies for managing bacterial vaginosis.

View Article and Find Full Text PDF

Background: The perioperative management of patients undergoing cardiac surgery is highly complex and involves numerous factors. There is a strong association between cardiac surgery and perioperative complications. The Brazilian Surgical Identification Study (BraSIS 2) aims to assess the incidence of death and early postoperative complications, identify potential risk factors, and examine both the demographic characteristics of patients and the epidemiology of cardiovascular procedures.

View Article and Find Full Text PDF

We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!