p53 inhibits OTUD5 transcription to promote GPX4 degradation and induce ferroptosis in gastric cancer.

Clin Transl Med

Department of Gastrointestinal Surgery, Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.

Published: March 2025

Background: Gastric cancer is one of the most prevalent malignant tumors within the digestive system, and ferroptosis playing a crucial role in its progression. Glutathione peroxidase 4 (GPX4), a key negative regulator of ferroptosis, is highly expressed in gastric cancer and contributes to tumor growth. Targeting the regulation of GPX4 has emerged as a promising approach to induce ferroptosis and develop effective therapy for gastric cancer.

Methods: To confirm that OTUD5 is a deubiquitinase of GPX4 and regulates ferroptosis, we performed Western blotting, Co-IP, immunofluorescence, quantitative real-time PCR, Ub assay and flow cytometry experiments. To explore the physiological function of OUTD5, we knocked out the Otud5 gene in the mouse gastric cancer cell line (MFC) using CRISPR-Cas9 and eatablished the subcutaneous tumour model. Immunohistochemistry (IHC) analysis was used to inveatigate the pathological correlation in human gastric cancer.

Results: We report that ovarian tumor domain-containing 5 (OTUD5) interacts with, deubiquitylates and stabilizes GPX4. OTUD5 depletion destabilizes GPX4, promotes lipid peroxidation and sensitizes gastric cancer cells to ferroptosis. Moreover, the p53 activator nutlin-3a suppresses OTUD5 transcription, leading to GPX4 degradation and ferroptosis of gastric cancer cells. Notably, only wild-type p53 has the capacity to inhibit OTUD5 transcription, while p53 mutations or deficiencies correlate with increased OTUD5 expression, promoting gastric cancer progression. Additionally, OTUD5 silencing and nutlin-3a-induced GPX4 degradation enhances the sensitivity of gastric cancer cells to ferroptosis in vivo. Subsequently, the p53/OTUD5/GPX4 axis is confirmed in clinical gastric cancer samples.

Conclusion: Collectively, these findings elucidate a mechanism whereby p53 inactivation upregulates OTUD5 transcription to deubiquitylate and stablize GPX4, resulting in ferroptosis inhibition and gastric cancer progression. This discovery highlights the potential therapeutic value of targeting OTUD5 to promote ferroptosis in p53-inactivated gastric cancer.

Key Points: OTUD5 mediates GPX4 deubiquitination to regulate its stability. Deletion of OTUD5 promotes ferroptosis and inhibits tumor growth. Wild type p53 inhibits OTUD5 transcription, thereby promoting GPX4 degradation and inhibiting the development of gastric cancer. OTUD5, GPX4 expression and p53 activity are highly correlated and correlates with clinical progression in STAD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ctm2.70271DOI Listing

Publication Analysis

Top Keywords

gastric cancer
44
otud5 transcription
20
gpx4 degradation
16
otud5
15
gastric
14
gpx4
12
cancer cells
12
ferroptosis
11
cancer
11
p53 inhibits
8

Similar Publications

Novel treatment options are needed for the gastric pathogen due to its increasing antibiotic resistance. The vitamin K analogue menadione has been extensively studied due to interest in its anti-bacterial and anti-cancer properties. Here, we investigated the effects of menadione on growth, viability, antibiotic resistance, motility and gene expression using clinical isolates.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) has garnered tremendous interest as a potential therapeutic tool because of its intriguing gene-silencing ability. Toward the success in the manufacture of siRNA therapeutics for the potential treatment of choroidal neovascularization (CNV), siRNA conjugated with dual functional units of membrane-penetrating heptafluoropropyl and age-related macular degeneration-targeting cyclic Arg-Gly-Asp (RGD) peptide was attempted for transcellular transportation into the cell interiors. Of note, cyclic RGD allowed selective affinities toward the angiogenic endothelial cells in the pathological CNV.

View Article and Find Full Text PDF

Purpose: Gastric cancer patients often experience significant fear of recurrence, impacting their physical and mental health. This study explores how time perspective influences fear of cancer recurrence, considering the roles of intrusive rumination and catastrophizing.

Methods: A cross-sectional design was employed with 394 gastric cancer patients.

View Article and Find Full Text PDF

MAZ-mediated LAMA5 transcription activation promotes gastric cancer progression through the STAT3 signaling.

Funct Integr Genomics

March 2025

Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, Shandong, 250021, P.R. China.

Laminin subunit alpha-5 (LAMA5) has been identified as an oncogene in many cancers, while its role and mechanism in gastric cancer (GC) remain to be explored. Here, the influences of LAMA5 knockdown on GC were investigated in vitro and in vivo. LAMA5 expression was silenced in GC cells alone or in combination with the signal transducer and activator of transcription 3 (STAT3) activator Colivelin, followed by CCK-8, colony formation, EdU, flow cytometry, wound healing assay, and Transwell assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!