The increasing impacts of climate change and intensified human activities exacerbate soil salinization, posing significant challenges to agricultural productivity. Therefore, addressing salt stress in crops is a critical area of research. In this study, strawberry seedlings (Fragaria×ananassa Duch. 'Benihoppe') were used to investigate the alleviating effects of hydrogen-rich water (HRW) on salt stress through integrated transcriptomic and metabolomic analyses. HRW treatment was found to significantly enhance plant growth, notably increasing root biomass by 49.50%. Additionally, HRW modulated key parameters, including the levels of soluble sugars, malondialdehyde (MDA), and antioxidant enzyme activities, while promoting K uptake and Na exclusion. Transcriptomic analysis revealed that HRW induced the expression of genes associated with ion transport, antioxidant defence, and cell wall biosynthesis in roots. Metabolomic profiling identified phenolic acids, flavonoids, and amino acids as critical metabolites in HRW-mediated salt stress mitigation. Integrated multi-omics analysis highlighted two key metabolic pathways, phenylpropanoid biosynthesis and amino and nucleoside sugar metabolism, pivotal to the observed protective effects. This study provides molecular insights into the mechanisms by which HRW alleviates salt stress in strawberry seedlings, underscoring the potential of hydrogen gas applications in sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.70151 | DOI Listing |
Plant Physiol
March 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
Detoxifying reactive oxygen species (ROS) that accumulate under saline conditions is crucial for plant salt tolerance. The Salt Overly Sensitive (SOS) pathway functions upstream, while flavonoids act downstream, in ROS scavenging under salt stress. However, the potential crosstalk between the SOS pathway and flavonoids in regulating salt stress responses and the associated mechanisms remain largely unexplored.
View Article and Find Full Text PDFPlant Biol (Stuttg)
March 2025
School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
Moderately saline water has been proposed as a potential irrigation resource for crops such as forage sorghum (Sorghum bicolor × Sorghum bicolor nothosubsp. drummondii) in drought-prone regions. However, it is not yet fully understood how salinity affects growth and potential toxicity of sorghum.
View Article and Find Full Text PDFJ Cosmet Dermatol
March 2025
R&D Innovation Center, Shandong Freda Biotech Co., Ltd., Jinan, Shandong, P. R. China.
Objective: Oxidative stress activates the reactive oxygen species (ROS) and excessive ROS can damage skin cells, initiating oxidative stress responses that contribute to inflammation, aging, and other skin issues. As a resident skin bacterium, Cutibacterium acnes (C. acnes) plays an important role in maintaining skin homeostasis and provides antioxidant benefits.
View Article and Find Full Text PDFFront Plant Sci
February 2025
College of Agriculture, Xinjiang Agricultural University, Urumqi, China.
Introduction: Maize ranks among the most essential crops globally, yet its growth and yield are significantly hindered by salt stress, posing challenges to agricultural productivity. To utilize saline-alkali soils more effectively and enrich maize germplasm resources, identifying salt-tolerant genes in maize is essential.
Methods: In this study, we used a salt-tolerant maize inbred line, SPL02, and a salt-sensitive maize inbred line, Mo17.
Physiol Mol Biol Plants
February 2025
Plant Engineering and Stress Adaptomics Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh India.
Unlabelled: Calcium (Ca⁺) as a secondary messenger has a multidimensional role, including the growth and development of plants and the adaptive response to stress conditions. Calmodulin (CaM), a calcium-binding protein, uniquely binds with these Ca⁺ ions and transmits Ca⁺ signals. Calmodulin proteins have been well-reported in various plants for playing a role in abiotic and biotic stress signaling; however, a comprehensive analysis of the genes of Indian mustard () has not been studied much.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!