Integrative analysis of gene expression and chromatin dynamics multi-omics data in mouse models of bleomycin-induced lung fibrosis.

Epigenetics Chromatin

State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, Henan, 453007, China.

Published: March 2025

Background: Pulmonary fibrosis is a relentless and ultimately fatal lung disorder. Despite a wealth of research, the intricate molecular pathways that contribute to the onset of PF, especially the aspects related to epigenetic modifications and chromatin dynamics, continue to be elusive and not fully understood.

Methods: Utilizing a bleomycin-induced pulmonary fibrosis model, we conducted a comprehensive analysis of the interplay between chromatin structure, chromatin accessibility, gene expression patterns, and cellular heterogeneity. Our chromatin structure analysis included 5 samples (2 control and 3 bleomycin-treated), while accessibility and expression analysis included 6 samples each (3 control and 3 bleomycin-treated).

Results: We found that chromatin architecture, with its alterations in compartmentalization and accessibility, is positively correlated with genome-wide gene expression changes during fibrosis. The importance of immune system inflammation and extracellular matrix reorganization in fibrosis is underscored by these chromatin alterations. Transcription factors such as PU.1, AP-1, and IRF proteins, which are pivotal in immune regulation, are associated with an increased abundance of their motifs in accessible genomic regions and are correlated with highly expressed genes.

Conclusions: We identified 14 genes that demonstrated consistent changes in their expression, accessibility, and compartmentalization, suggesting their potential as promising targets for the development of treatments for lung fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13072-025-00579-5DOI Listing

Publication Analysis

Top Keywords

gene expression
12
chromatin dynamics
8
lung fibrosis
8
pulmonary fibrosis
8
chromatin structure
8
analysis included
8
included samples
8
samples control
8
chromatin
7
fibrosis
6

Similar Publications

Semiautomated Production of Cell-Free Biosensors.

ACS Synth Biol

March 2025

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Cell-free synthetic biology biosensors have potential as effective diagnostic technologies for the detection of chemical compounds, such as toxins and human health biomarkers. They have several advantages over conventional laboratory-based diagnostic approaches, including the ability to be assembled, freeze-dried, distributed, and then used at the point of need. This makes them an attractive platform for cheap and rapid chemical detection across the globe.

View Article and Find Full Text PDF

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Females remain underrepresented in opioid use disorder (OUD) research, particularly regarding dorsal striatal neuroadaptations. Chaperonins seem to play a role in opioid-induced neural plasticity, yet their contribution to OUD-related changes in the dorsal striatum (DS) remains poorly understood. Given known sex differences in opioid sensitivity, it is important to determine how chaperonin expression contributes to OUD-related adaptations in females.

View Article and Find Full Text PDF

Motivation: Computational models are crucial for addressing critical questions about systems evolution and deciphering system connections. The pivotal feature of making this concept recognisable from the biological and clinical community is the possibility of quickly inspecting the whole system, bearing in mind the different granularity levels of its components. This holistic view of system behaviour expands the evolution study by identifying the heterogeneous behaviours applicable, for example, to the cancer evolution study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!