Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The increase in metabolic dysfunction-associated steatotic liver disease (MASLD) and its progression to metabolic dysfunction-associated steatohepatitis (MASH) is a worldwide healthcare challenge. Heterogeneity between men and women in the prevalence and mechanisms of MASLD and MASH is related to differential sex hormone signalling within the liver, and declining hormone levels during aging. In this study we used biochemically characterised pluripotent stem cell derived 3D liver spheres to model the protective effects of testosterone and estrogen signalling on metabolic liver disease 'in the dish'. We identified sex steroid-dependent changes in gene expression which were protective against metabolic dysfunction, fibrosis, and advanced cirrhosis patterns of gene expression, providing new insight into the pathogenesis of MASLD and MASH, and highlighting new druggable targets. Additionally, we highlight gene targets for which drugs already exist for future translational studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s13287-025-04238-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!