Objective: This study was designed to establish a diagnostic model for osteoporosis by collecting clinical information from patients with and without osteoporosis. Various machine learning algorithms were employed for training and testing the model, evaluating its performance, and conducting validations to explore the most suitable machine learning algorithm.

Methods: Clinical information, including demographic data, examination results, medical history, and laboratory test results, was collected from inpatients with and without osteoporosis. The LASSO algorithm was utilized for feature selection, and multiple machine learning algorithms were applied to calculate the model's accuracy, precision, recall, F1 score, and average precision (AP) value. Receiver operating characteristic (ROC) curves for each algorithm were plotted, and a comprehensive evaluation was conducted to identify the most suitable machine learning model. Finally, the model's predictive accuracy was validated using corresponding information from other patients.

Results: A total of 1063 patients were included; 562 had osteoporosis, and 501 did not. After LASSO feature selection, the most important features for the model's predictive results were determined to be age, height, weight, alkaline phosphatase activity, and osteocalcin. Evaluation of the accuracy, precision, recall, F1 score, and AP value for each algorithm, along with ROC curves, led to the selection of the light gradient boosting machine (LGBM) algorithm as the best algorithm for the model. The validation results confirmed the model's excellent predictive ability.

Conclusion: This study established a preliminary diagnostic model for osteoporosis, contributing to increased efficiency in diagnosing the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12911-025-02943-7DOI Listing

Publication Analysis

Top Keywords

machine learning
20
training testing
8
diagnostic model
8
model osteoporosis
8
learning algorithms
8
suitable machine
8
feature selection
8
accuracy precision
8
precision recall
8
recall score
8

Similar Publications

Background: Processing data from electronic health records (EHRs) to build research-grade databases is a lengthy and expensive process. Modern arthroplasty practice commonly uses multiple sites of care, including clinics and ambulatory care centers. However, most private data systems prevent obtaining usable insights for clinical practice.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients' health. Passive in-home sensor systems enable 24×7 health monitoring.

View Article and Find Full Text PDF

AI-Driven Discovery of Highly Specific and Efficacious hCES2A Inhibitors for Ameliorating Irinotecan-Triggered Gut Toxicity.

J Med Chem

March 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.

View Article and Find Full Text PDF

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.

View Article and Find Full Text PDF

Background: Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin.

Objective: In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!