Background: Grasping and manipulating objects requires humans to adapt both grip and manipulation forces. When handling an object with both hands, the additional degrees of freedom introduce more levels to the redundancy of the object manipulation since we can distribute the contribution of the grip and manipulation forces between hands.
Methods: In this study, we investigated the forces produced by both hands during coupled bimanual manipulation of a needle object in a virtual environment. The task objective was to puncture a virtual tissue, modeled as a linear spring, and stop immediately after, with the hands arranged in front and back positions in the movement direction.
Results: We show that during tissue interaction, grip forces are modulated consistently between front and back hands across participants, but manipulation forces are not. That is, the back hand consistently produced excessive grip force compared to the front hand regardless of hand configuration, while manipulation force distribution between the two hands was variable. After the tissue puncture, we again observed consistent grip force behavior during the reactive response to the force drop following the puncture. The grip force signal exhibited a consistent temporal profile in both the front and back hands with amplitude modulation according to the tissue stiffness in the front hand.
Conclusions: Overall, our results support the idea of distinct control mechanisms for grip and manipulation forces which rely on hand position rather than hand dominance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12984-025-01600-4 | DOI Listing |
J Osteopath Med
March 2025
Wood College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA.
Context: Sarcopenia is a disease characterized by low muscle mass and function that places individuals at greater risk of disability, loss of independence, and death. Current therapies include addressing underlying performance issues, resistance training, and/or nutritional strategies. However, these approaches have significant limitations, and chronic inflammation associated with sarcopenia may blunt the anabolic response to exercise and nutrition.
View Article and Find Full Text PDFJ Dent Res
March 2025
Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore. Center to Advance Chronic Pain Research, Baltimore, MD, USA.
Multiple sensory afferents, including mechanosensitive and nociceptive nerves, are projected to the periodontium. Peptidergic afferents expressing transient receptor potential vanilloid 1 (TRPV1), a receptor for capsaicin, mediate pain caused by orthodontic forces. However, their role in orthodontic force-induced alveolar bone remodeling is poorly understood as is the contribution of mechanosensitive ion channels such as Piezo2 in nociceptive nerves.
View Article and Find Full Text PDFAdv Colloid Interface Sci
March 2025
School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India. Electronic address:
Defect engineering represents a paradigm shift in tailoring nanomaterials for enhanced catalytic performance across various applications. This manuscript succinctly highlights the significance of defect engineering in improving the catalytic performance of BiOI nanoparticles for multiple applications, particularly in photocatalysis. The photocatalytic process of BiOI semiconductor is intricately linked to its indirect bandgap and layered crystalline structure.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China.
Optimizing the immune microenvironment is essential for successful implant osseointegration. In this study, four different nano/microstructures were fabricated on polyetheretherketone (PEEK) substrates by varying the agitation speed during sulfonation to influence osteoimmunomodulation and implant integration. The results indicate that nano/microstructures with minimal dimensions (SP450) inhibit actin polymerization by reducing calcium influx through PIEZO1, activating the anti-inflammatory M2 macrophage phenotype.
View Article and Find Full Text PDFJ Neuroeng Rehabil
March 2025
Neuromuscular Diagnostics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Background: Grasping and manipulating objects requires humans to adapt both grip and manipulation forces. When handling an object with both hands, the additional degrees of freedom introduce more levels to the redundancy of the object manipulation since we can distribute the contribution of the grip and manipulation forces between hands.
Methods: In this study, we investigated the forces produced by both hands during coupled bimanual manipulation of a needle object in a virtual environment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!