Investigating whether alcohol is transformed to norepinephrine or dopamine in the mouse brain.

Pharmacol Rep

Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.

Published: March 2025

Background: A number of rodent studies have investigated the effects of alcohol (ethanol) administration on the catecholaminergic neurotransmitters, norepinephrine (NE) and dopamine (DA). These studies suggest that presentation of alcohol to mice or rats can alter brain levels of NE and DA, in various subregions. Other studies have presented the hypothesis that there may be an unidentified pathway in rodents, and other organisms, that actually transforms ethanol to NE or DA. Here, this paper investigates the hypothesis in male CD-1 mice.

Methods: Experimental mice were systemically injected with an intoxicating dose of stable isotope-labeled carbon 13 (C13) ethanol (ethanol-1-C, 20% v/v, 1.5 g/kg, ip), and brain samples (hippocampus and brainstem) were collected two hours post-injection. Two other groups of mice received normal unlabeled carbon 12 (C12) ethanol or a water (Control) injection, respectively.

Results: Although we had difficulty detecting the two neurotransmitters (especially C13 NE) due to their very low concentrations, high-resolution mass spectrometry analysis suggests that C12 ethanol selectively boosted hippocampal C12 NE, and C13 ethanol likewise boosted hippocampal C13 NE. We did not observe effects on DA.

Conclusions: These data provide preliminary information on whether there is a novel biosynthetic pathway in mice that converts alcohol to catecholamines in select brain regions, where the ethanol molecule would presumably help form the ethanolamine side chain of NE. There are, however, alternative interpretations of these findings, including that acute alcohol administration modulates catecholamine release, reuptake, metabolism, or canonical biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43440-025-00708-7DOI Listing

Publication Analysis

Top Keywords

norepinephrine dopamine
8
c13 ethanol
8
c12 ethanol
8
boosted hippocampal
8
ethanol
7
investigating alcohol
4
alcohol transformed
4
transformed norepinephrine
4
dopamine mouse
4
brain
4

Similar Publications

Depression is a common comorbidity in Parkinson's disease (PD), significantly reducing patients' quality of life. This mini-review examines pharmacological and nonpharmacological therapies for managing depression in PD, analyzing their benefits, and limitations. Pharmacological options include tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), levodopa, dopaminergic agonists, and monoamine oxidase B inhibitors.

View Article and Find Full Text PDF

Investigating whether alcohol is transformed to norepinephrine or dopamine in the mouse brain.

Pharmacol Rep

March 2025

Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.

Background: A number of rodent studies have investigated the effects of alcohol (ethanol) administration on the catecholaminergic neurotransmitters, norepinephrine (NE) and dopamine (DA). These studies suggest that presentation of alcohol to mice or rats can alter brain levels of NE and DA, in various subregions. Other studies have presented the hypothesis that there may be an unidentified pathway in rodents, and other organisms, that actually transforms ethanol to NE or DA.

View Article and Find Full Text PDF

Motor symptoms are central to diagnosing Parkinson's disease (PD), but depression and anxiety significantly impact the prognosis and course of PD. For many PD patients, these mental health issues may be the most crucial determinants of quality of life. This study uses an interdisciplinary approach to provide an in-depth understanding of the pathogenesis, diagnostic methods, and therapeutic strategies for depression and anxiety in PD, incorporating neuroscience, psychiatry, and psychology.

View Article and Find Full Text PDF

Parishin A alleviates insomnia by regulating hypothalamic-pituitary-adrenal axis homeostasis and directly targeting orexin receptor OX.

Eur J Pharmacol

March 2025

Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China. Electronic address:

Parishin A (PA), a bioactive compound derived from Gastrodia elata Blume, has been used as a herbal remedy for insomnia. Nevertheless, the mechanism underlying the effect of PA on promotion of sleep and its potential targets remain to be elucidated. This study aimed to investigate the potential of PA in ameliorating insomnia, probing into its interactions with the orexin receptor 2 (OX), antagonists of which are used clinically for the treatment of sleep disorders.

View Article and Find Full Text PDF

Purpose: Parkinson's disease (PD) disrupts the regulation of neurotransmitters in the brain, causing patients to experience not only motor symptoms but also non-motor symptoms such as depression. 6-shogaol (6S) is a potential neuro-nutraceutical derived from ginger, and is known to ameliorate motor symptoms by suppressing inflammation in PD mice. In this study, we investigated whether 6S can attenuate motor symptoms and depression-like behaviors through neurotransmitter regulation and to elucidate which neurotransmitters are intimately correlated with these effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!