Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Simvastatin is a potent statin with antioxidant and anti-inflammatory characteristics, often used to treat hyperlipidemia and related cardiovascular disorders. Nonetheless, its therapeutic advantages are limited by poor water solubility and substantial degradation by CYP3A4 enzymes. This research aimed to improve simvastatin's physicochemical characteristics and therapeutic effectiveness by developing 3D-dendritic mesoporous silica nanoparticles as nanocarriers. Dendritic silica nanoparticles were manufactured using a one-pot biphase stratification process and then surface-modified with aminopropyl groups to enhance drug loading and release characteristics. The optimization of loading parameters, such as solvent type, drug-to-carrier ratio, and loading duration, produced dendritic spherical nanoparticles with a uniform size (< 200 nm), a zeta potential of + 21 mV, and a substantial drug loading capacity (> 20%). Characterization verified the conversion of crystalline simvastatin into an amorphous state, promoting improved saturation solubility and demonstrating sustained release via a Fickian diffusion mechanism. In vivo assessments revealed enhanced antihyperlipidemic, antioxidant properties, and considerable protection against oxidative damage in a poloxamer-407-induced hyperlipidemia model. Histological evaluations of liver and aorta tissues demonstrated almost normal morphology, highlighting the safety and usefulness of the nanoparticles. These results emphasized the potential of aminated dendritic silica nanoparticles as an effective platform for enhancing simvastatin therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-025-01825-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!