The human skeleton is renewed and regenerated throughout life, by a cellular process known as bone remodeling. Stem cells are clono-genic cells that are capable of differentiation into multiple mature cell types (multipotency), and simultaneously replenishing stem cell pool (self-renewal), which allows them to sustain tissue development and maintenance. Circulating mesenchymal stromal/stem cells (MSCs), are mobile adult stem cells with specific gene expression profiling, as well as enhanced mitochondrial remodeling as a promising source for personalized cell and gene therapy. A global LGR5-associated genetic interaction network highlights the functional organization and molecular phenotype of circulating MSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s10038-025-01322-4 | DOI Listing |
J Hum Genet
March 2025
Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China.
The human skeleton is renewed and regenerated throughout life, by a cellular process known as bone remodeling. Stem cells are clono-genic cells that are capable of differentiation into multiple mature cell types (multipotency), and simultaneously replenishing stem cell pool (self-renewal), which allows them to sustain tissue development and maintenance. Circulating mesenchymal stromal/stem cells (MSCs), are mobile adult stem cells with specific gene expression profiling, as well as enhanced mitochondrial remodeling as a promising source for personalized cell and gene therapy.
View Article and Find Full Text PDFCell Mol Life Sci
March 2025
Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
The bone marrow microenvironment contains heterogeneous stromal cells, which are critical for bone remodeling and provide essential supportive roles for hematopoietic functions. Although the diversity of PDGFRαβ mesenchymal stromal/stem cells (MSCs) get consensus, the osteo-lineage cells (OLCs) that constitute the developmental trajectory of osteoblasts are largely remain unclear. Here, we construct a comprehensive atlas of stromal cell via performing integrative single cell analyses for 77 samples from 14 datasets.
View Article and Find Full Text PDFStem Cell Res Ther
March 2025
OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
The use of mesenchymal stem cells (MSCs) from perinatal tissue sources has gained attention due to their availability and lack of significant ethical or moral concerns. These cells have a higher proliferative capability than adult MSCs and less immunogenic or tumorigenesis risk than fetal and embryonic stem cells. Additionally, they do not require invasive isolation methods like fetal and adult MSCs.
View Article and Find Full Text PDFJ Mater Chem B
March 2025
Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 38041 Grenoble, France.
Injectable hydrogels have emerged as a promising strategy for treating stroke and neurodegenerative diseases, but their effectiveness depends on precise injection, defect filling, and long-term retention at the target site. While MRI can help visualize hydrogels, distinguishing them from fluid-filled spaces, like a post-stroke cavity at a chronic stage, is challenging owing to their high water content and similar MR properties. In this study, a MRI detectable hyaluronic acid (HA) hydrogel that is injectable and self-healing was developed for tracking after intracerebral injection in stroke.
View Article and Find Full Text PDFStem Cell Res Ther
March 2025
Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
Background: There is compelling evidence that FoxP3 regulatory T cells (Tregs) play a critical role in promoting tumor immune evasion. Our prior research demonstrated that the expression of miR-125b-5p directly inhibits Tregs by targeting TNFR2 and FoxP3. Given the significant therapeutic potential of mesenchymal stromal/stem cell (MSC)-derived exosomes (MSC-EXO) in cancer treatment, the potential role of MSC-EXO in augmenting anti-tumor immunotherapy through the delivery of miR-125b-5p remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!