The GluN1/GluN3A receptor, a unique excitatory glycine receptor recently identified in the central nervous system, challenges traditional perspectives of N-methyl-D-aspartate (NMDA) receptor diversity and glycinergic signaling. Its role in emotional regulation positions it as a potential therapeutic target for neuropsychiatric disorders. However, pharmacological research on GluN1/GluN3A receptors remains at an early stage. Traditional high-throughput screening methods for ion channel drug discovery often lack efficiency, particularly when applied to large compound libraries. To address this concern, we designed a deep learning-based strategy that balances efficiency and accuracy for identifying GluN1/GluN3A inhibitors. First, a sequence-based scoring function was developed to rapidly screen a library containing 18 million compounds, reducing the pool to approximately 10 candidates. Next, two complex-based scoring functions, IGModel and RTMScore, were employed to precisely score and rank the remaining candidates. Finally, an active molecule with an IC of 2.87 ± 0.80 μM for the GluN1/GluN3A receptor was confirmed through whole-cell voltage-clamp electrophysiology. This study also presents a paradigm for integrating deep learning into rapid and precise high-throughput screening.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41401-025-01513-xDOI Listing

Publication Analysis

Top Keywords

glun1/glun3a receptor
12
deep learning-based
8
learning-based strategy
8
high-throughput screening
8
glun1/glun3a
5
receptor
5
efficient deep
4
strategy screen
4
screen inhibitors
4
inhibitors glun1/glun3a
4

Similar Publications

The GluN1/GluN3A receptor, a unique excitatory glycine receptor recently identified in the central nervous system, challenges traditional perspectives of N-methyl-D-aspartate (NMDA) receptor diversity and glycinergic signaling. Its role in emotional regulation positions it as a potential therapeutic target for neuropsychiatric disorders. However, pharmacological research on GluN1/GluN3A receptors remains at an early stage.

View Article and Find Full Text PDF

GluN3A and Excitatory Glycine Receptors in the Adult Hippocampus.

J Neurosci

October 2024

Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada

The GluN3A subunit of -methyl-D-aspartate receptors (NMDARs) plays an established role in synapse development, but its contribution to neural circuits in the adult brain is less clear. Recent work has demonstrated that in select cell populations, GluN3A assembles with GluN1 to form GluN1/GluN3A receptors that are insensitive to glutamate and instead serve as functional excitatory glycine receptors (eGlyRs). Our understanding of these eGlyRs, and how they contribute to intrinsic excitability and synaptic communication within relevant networks of the developing and the mature brain, is only beginning to be uncovered.

View Article and Find Full Text PDF

Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling.

Trends Neurosci

August 2023

Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France. Electronic address:

GluN3A is a glycine-binding subunit belonging to the NMDA receptor (NMDAR) family that can assemble with GluN1 subunits to form unconventional NMDARs insensitive to glutamate and activated by glycine only. The existence of such excitatory glycine receptors (eGlyRs) in the central nervous system (CNS) has long remained elusive. Recently, eGlyRs have been identified in specific brain regions, where they represent a novel neuronal signaling modality by which extracellular glycine tunes neuronal excitability, circuit function, and behavior.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) play an essential role in excitatory neurotransmission in the mammalian brain, and their physiological importance is underscored by the large number of pathogenic mutations that have been identified in the receptor's GluN subunits and associated with a wide range of diseases and disorders. Here, we characterized the functional and pharmacological effects of the pathogenic N650K variant in the GluN1 subunit, which is associated with developmental delay and seizures. Our microscopy experiments showed that when expressed in HEK293 cells (from ATCC®), the GluN1-N650K subunit increases the surface expression of both GluN1/GluN2A and GluN1/GluN2B receptors, but not GluN1/GluN3A receptors, consistent with increased surface expression of the GluN1-N650K subunit expressed in hippocampal neurons (from embryonic day 18 of Wistar rats of both sexes).

View Article and Find Full Text PDF

The exciting side of unconventional glycine receptors.

Neuron

August 2022

Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland. Electronic address:

In this issue of Neuron, Bossi, Dhanasobhon, and colleagues uncover the functional relevance of GluN1/GluN3A excitatory glycine receptors (eGlyRs) in the neocortex and amygdala. This study provides exciting new insights into the role of unconventional eGlyRs in brain function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!