Edenia gomezpompae, an endophytic fungus derived from plants, produced a diverse array of preussomerins, a type of spirobisnaphthalenes featuring two spiroketal groups, which exhibited significant antibacterial, antifungal, and cytotoxic activities. Structurally, the biosynthesis of preussomerins might be related to the biosynthesis of 1,8-dihydroxynaphthalene (DHN), a precursor of DHN-melanin. However, the absence of efficient gene-editing tools for E. gomezpompae has hindered the biosynthetic study of preussomerins. In this study, we developed a CRISPR/Cas9-based gene editing system for E. gomezpompae SV2 that was isolated from the stem of Setaria viridis, by utilizing the endogenous U6 snRNA promoter to drive sgRNA expression. Using this system, we successfully disrupted the polyketide synthase (PKS)-encoding gene, Egpks, a putative 1,3,6,8-tetrahydroxynaphthalene synthase gene involved in the biosynthesis of DHN-melanin, with an editing efficiency up to 92% and a knockout efficiency of 71% when employing the U6 snRNA-3 promoter. Furthermore, the disrupted mutant (∆Egpks) displayed white hyphae and lost the ability to produce preussomerins. These results provided a foundational tool for genetic manipulation in E. gomezpompae and revealed the role of EgPKS in the biosynthesis of preussomerin-type spirobisnaphthalenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-025-04313-x | DOI Listing |
Proc Natl Acad Sci U S A
March 2025
Department of Biomedical Engineering, and Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708.
CRISPR-Cas9 systems have revolutionized biotechnology, creating diverse new opportunities for biomedical research and therapeutic genome and epigenome editing. Despite the abundance of bacterial CRISPR-Cas9 systems, relatively few are effective in human cells, limiting the overall potential of CRISPR technology. To expand the CRISPR-Cas toolbox, we characterized a set of type II CRISPR-Cas9 systems from select bacterial genera and species encoding diverse Cas9s.
View Article and Find Full Text PDFGigascience
January 2025
Horticultural Sciences Department, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA.
Background: Cultivated strawberry (Fragaria xananassa Duch.), an allo-octoploid species arising from at least 3 diploid progenitors, poses a challenge for genomic analysis due to its high levels of heterozygosity and the complex nature of its polyploid genome.
Results: This study developed the complete haplotype-phased genome sequence from a short-day strawberry, 'Florida Brilliance' without parental data, assembling 56 chromosomes from telomere to telomere.
Diabetologia
March 2025
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
Aims/hypothesis: Fat deposition in the pancreas is implicated in beta cell dysfunction and the progress of type 2 diabetes. However, there is limited evidence to confirm the correlation and explore how pancreatic fat links with beta cell dysfunction in human type 2 diabetes. This study aimed to examine the spatial relationship between pancreatic fat and islets in human pancreases.
View Article and Find Full Text PDFAdv Mater
March 2025
Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 1UL, UK.
Base editing, a CRISPR-based genome editing technology, enables precise correction of single-nucleotide variants, promising resolutive treatment for monogenic genetic disorders like recessive dystrophic epidermolysis bullosa (RDEB). However, the application of base editors in cell manufacturing is hindered by inconsistent efficiency and high costs, contributed by suboptimal delivery methods. Nanoneedles have emerged as an effective delivery approach, enabling highly efficient, non-perturbing gene therapies both in vitro and in vivo.
View Article and Find Full Text PDFCells
March 2025
Renal Division, Department of Medicine IV, Ludwig-Maximilians-University (LMU) Hospital, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany.
A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!