The epithelial barrier in different organs is the first line of defense against environmental insults and allergens, with type 2 immunity serving as a protective function. Genetic factors, and biological and chemical insults from the surrounding environment altered regulate epithelial homeostasis through disruption of epithelial tight junction proteins or dilated intercellular spaces. Recent studies suggest that epithelial barrier dysfunction contributes to pathologic alteration in diseases with type 2 immune dysregulation including (but not limited to) atopic dermatitis, prurigo nodularis, asthma, chronic rhinosinusitis with nasal polyps, and eosinophilic esophagitis. In this review, we summarized current understanding of dysfunction of barrier and its interaction with type 2 inflammation across different organs, and discussed the role of epithelial barrier disruption in the pathogenesis of type 2 inflammation. In addition, recent progresses of emerging barrier restorative therapies are reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12026-025-09606-9DOI Listing

Publication Analysis

Top Keywords

type inflammation
12
epithelial barrier
12
barrier dysfunction
8
type
5
epithelial
5
barrier
5
systemic barrier
4
dysfunction type
4
inflammation diseases
4
diseases perspective
4

Similar Publications

Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds, and psoriasis. Normally, skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However, epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes.

View Article and Find Full Text PDF

Diabetic nephropathy is a severe chronic complication characterized by cytotoxicity, inflammation, and fibrosis, ultimately leading to renal failure. This study systematically investigated the effects of the PARP1 inhibitor PJ-34 on high glucose-induced cytotoxicity, inflammation, and fibrosis in HK-2 cells, as well as its improvement on neuropathic pain response and transforming growth factor β (TGFβ) expression in a type 1 diabetes mellitus diabetic nephropathy mouse model. Through cellular and animal experiments, we observed that PJ-34 significantly enhanced the proliferative capacity of cells damaged by high glucose, reduced apoptosis, and decreased the release of proinflammatory factors TGFα, interleukin-6, and interleukin-1β.

View Article and Find Full Text PDF

The life cycle of effector T cells is determined by signals downstream of the T cell receptor (TCR) that induce activation and proinflammatory activity, or death as part of the process to resolve inflammation. We recently reported that T cell myeloid differentiation primary response 88 (MyD88) tunes down TCR activation and limits T cell survival in the cardiac and tumor inflammatory environments, in contrast to its proinflammatory role in myeloid cells upon toll-like receptor (TLR) recognition of pathogen- and damage-associated molecular patterns. However, the molecular mechanism remains unknown.

View Article and Find Full Text PDF

A gene encoding the transcription factor RTF1 has been associated with an increased risk of ulcerative colitis (UC). In this study, we investigated its function in modulating T cells expressing interleukin-17A (Th17 cells), a cardinal cell type promoting intestinal inflammation. Our results indicate that Rtf1 deficiency disrupts the differentiation of Th17 cells, while leaving regulatory T cells (Treg) unaffected.

View Article and Find Full Text PDF

Intrapancreatic adipocytes and beta cell dedifferentiation in human type 2 diabetes.

Diabetologia

March 2025

Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.

Aims/hypothesis: Fat deposition in the pancreas is implicated in beta cell dysfunction and the progress of type 2 diabetes. However, there is limited evidence to confirm the correlation and explore how pancreatic fat links with beta cell dysfunction in human type 2 diabetes. This study aimed to examine the spatial relationship between pancreatic fat and islets in human pancreases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!