Primary cilia are hair-like projections that protrude on most of mammalian cells and mediate reception of extracellular signals. Numerous studies have demonstrated that a variety of cancer cells including pancreatic ductal adenocarcinoma (PDAC) fail to form primary cilia. The loss of primary cilia is thought to cause carcinogenesis and progressive cell proliferation. However, the relationship of the primary cilia loss with carcinogenesis and/or cancer malignancy remains arguable. We herein examined whether ciliogenesis was increased in a model of more progressive PDAC and investigated effects of ciliogenesis on growth of PDAC using a pancreatic cancer cell line, PANC-1. The majority of PANC-1 cells in a cell cluster grown from a solitary cell possessed primary cilia. The rate of ciliogenesis was higher in cells grown from low density than in cells grown from high density. Almost all clones passing limiting dilution culture had abilities to grow primary cilia. Compared to the parental PANC-1 cells, clones that proliferated from a solitary cell showed increase in the ciliogenesis rate. Blocking ciliogenesis suppressed cell cluster formation. Our results suggest that pancreatic cancer cells that are more resistant to a solitary condition have abilities of ciliogenesis and form tumor-like cell clusters in a primary cilia-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00795-025-00428-0 | DOI Listing |
Sci Adv
March 2025
Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, GLI (glioma-associated oncogene) transcription factors, depends on the primary cilium. Upon pathway initiation, generating the precise levels of the activator form of GLI depends on its concentration at the cilium tip. The mechanisms underlying this critical step in Hh signaling are unclear.
View Article and Find Full Text PDFMol Biol Cell
March 2025
Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands.
Intraflagellar transport (IFT) coordinates the transport of cargo in cilia and is essential for ciliary function. CILK1 has been identified as a key regulator of IFT. The mechanism by which it acts has, however, remained unclear.
View Article and Find Full Text PDFIndian J Otolaryngol Head Neck Surg
January 2025
Indian Institute of Ear Diseases, Muzaffarnagar, Uttar Pradesh India.
The article titled "Role of the Maneuver in Sinusitis and Eustachian Tube Dysfunction" explores the efficacy of a novel technique known as the Maneuver. Sinusitis and Eustachian tube dysfunction are prevalent respiratory conditions often linked to impaired mucociliary flow and poor nasal clearance. Traditional maneuvers such as the Toynbee and Valsalva techniques provide temporary relief by forcefully opening the Eustachian tube but carry risks of injury and complications and does not work for sinusitis.
View Article and Find Full Text PDFIndian J Otolaryngol Head Neck Surg
February 2025
Department of ENT and Head and Neck Surgery, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India.
The present study aimed to assess and compare the effect of smoking on ultrastructure morphology of nasal mucosa between smokers and nonsmokers. The study included 50 subjects aged 25-62 years who were planned for rhinological surgical procedures. Subjects were divided into 3 groups- group 1 (nonsmoker), group 2 (smokers taking 1 pack/day or less), group 3 (smokers taking 2 pack/day or more).
View Article and Find Full Text PDFMed Mol Morphol
March 2025
Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
Primary cilia are hair-like projections that protrude on most of mammalian cells and mediate reception of extracellular signals. Numerous studies have demonstrated that a variety of cancer cells including pancreatic ductal adenocarcinoma (PDAC) fail to form primary cilia. The loss of primary cilia is thought to cause carcinogenesis and progressive cell proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!