Methylmalonic aciduria (MMA) is an inborn error of metabolism resulting in loss of function of the enzyme methylmalonyl-CoA mutase (MMUT). Despite acute and persistent neurological symptoms, the pathogenesis of MMA in the central nervous system is poorly understood, which has contributed to a dearth of effective brain specific treatments. Here we utilised patient-derived induced pluripotent stem cells and in vitro differentiation to generate a human neuronal model of MMA. We reveal strong evidence of mitochondrial dysfunction caused by deficiency of MMUT in patient neurons. By employing patch-clamp electrophysiology, targeted metabolomics, and bulk transcriptomics, we expose an altered state of excitability, which is exacerbated by application of dimethyl-2-oxoglutarate, and we suggest may be connected to metabolic rewiring. Our work provides first evidence of mitochondrial driven neuronal dysfunction in MMA, which through our comprehensive characterisation of this paradigmatic model, enables first steps to identifying effective therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-025-07828-zDOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
8
methylmalonic aciduria
8
evidence mitochondrial
8
dysfunction drives
4
drives neuronal
4
neuronal exhaustion
4
exhaustion phenotype
4
phenotype methylmalonic
4
aciduria methylmalonic
4
mma
4

Similar Publications

Genetic evidence for the suppressive role of zebrafish vhl targeting mavs in antiviral innate immunity during RNA virus infection.

J Immunol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.

The von Hippel-Lindau (VHL) tumor suppressor gene VHL is a classic tumor suppressor that has been identified in family members with clear cell renal cell carcinomas, central nervous system and retinal hemangioblastomas, phaeochromocytomas, and pancreatic neuroendocrine tumors. The well-defined function of VHL is to mediate proteasomal degradation of hydroxylated hypoxia-inducible factor α proteins, resulting in the downregulation of hypoxia-responsive gene expression. Previously, we reported that VHL inhibits antiviral signaling by targeting mitochondrial antiviral signaling protein (MAVS) for proteasomal degradation.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a large DNA virus of the Asfarviridae family that causes a fatal hemorrhagic disease in domestic swine and wild boar. Infections with moderately virulent strains predominantly result in a milder clinical course and lower lethality. As target cells of ASFV, monocytes play a crucial role in triggering T-cell-mediated immune defense and ASF pathogenesis.

View Article and Find Full Text PDF

Offspring exposed to metformin treatment for gestational diabetes mellitus (GDM) experience altered growth patterns that increase the risk for developing cardiometabolic diseases later in life. The adaptive cellular mechanisms underlying these patterns remain unclear. Therefore, the objective of this study was to determine if chronic metformin exposure associated with GDM treatment elicits infant cellular metabolic adaptations.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative condition marked by the gradual degeneration of dopaminergic neurons, resulting in a range of disabling motor and non-motor symptoms. Despite advances, the molecular mechanisms underlying PD remain elusive, and effective biomarkers and therapeutic targets are limited. Recent studies suggest that mitochondrial dysfunction and dysregulated cellular metabolism are central to PD pathogenesis.

View Article and Find Full Text PDF

Erbium oxide nanoparticles (ErO-NPs) have attracted significant attention for their unique physicochemical properties, including high surface area, biocompatibility, and stability. However, the impact of ErO-NPs on lymphoma cells (LCs) has not been explored, making this an innovative avenue for exploration. Therefore, the current study aimed to explore the influence of ErO-NPs on cell viability, genomic and mitochondrial DNA integrity, reactive oxygen species (ROS) generation and apoptosis induction in human U937 LCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!